EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hamiltonian Markov Chain Monte Carlo Schemes for Rare Event Estimation

Download or read book Hamiltonian Markov Chain Monte Carlo Schemes for Rare Event Estimation written by Hamed Nikbakht and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimating rare event probabilities is a commonly encountered important problem in several engineering and scientific applications, most often observed in the form of probability of failure (PF) estimation or, alternatively and better sounding for the public, reliability estimation. In many practical applications, such as for structures, airplanes, mechanical equipment, and many more, failure probabilities are fortunately very low, from 10-4 to even 10-9 and less. Such estimations are of utmost importance for design choices, emergency preparedness, safety regulations, maintenance suggestions and more. Calculating such small numbers with accuracy however presents many numerical and mathematical challenges. To make matters worse, these estimations in realistic applications are usually based on high dimensional random spaces with numerous random variables and processes involved. A single simulation of such a model, or else a single model call, may also require several minutes to hours of computing time. As such, reducing the number of model calls is of great importance in these problems and one of the critical parameters that limits or prohibits use of several available techniques in the literature. This research is motivated by efficiently and precisely quantifying these probabilities, often encountered in reliability analysis of complex engineering systems, based on a developed framework termed Approximate Sampling Target with Postprocessing Adjustment (ASTPA), which herein is integrated with and supported by gradient-based Hamiltonian Markov Chain Monte Carlo (HMCMC) methods. Hamiltonian Markov Chain Monte Carlo sampling is characterized by much better scalability, faster mixing rates, is capable of generating samples with much weaker auto-correlation, even in complex high-dimensional parameter spaces, and has enjoyed broad-spectrum successes in most general settings. HMCMC adopts physical system dynamics, rather than a proposal probability distribution, and can be used to produce distant proposal samples for the integrated Metropolis step, thereby avoiding the slow exploration of the state space that results from the diffusive behavior of simple random-walk proposals. In this work, we aim to advance knowledge on Hamiltonian Markov Chain Monte Carlo methods, in general, with particular emphasis on its efficient utilization for rare event probability estimation in both Gaussian and Non-Gaussian spaces. This research also seeks to offer significant advancements in probabilistic inference and reliability predictions. Thus, in this context, we develop various Quasi-Newton based HMCMC schemes, which can sample very adeptly, particularly in difficult cases of high curvature, high-dimensionality and very small failure probabilities. The methodology is formally introduced, and the key theoretical aspects, and the underlying assumptions are discussed. Performance of the proposed methodology is then compared against state-of-the-art Subset Simulation in a series of challenging static and dynamic (time-dependent reliability) low- and high-dimensional benchmark problems. In the last phase of this work, with an aim to avoid using analytical gradients, within the proposed HMCMC-based framework, we investigate application of the Automatic Differentiation (AD) technique. In addition, to avoid use of gradients altogether and to improve the performance of the original SuS algorithm, we study the application of Quasi-Newton based HMCMC within the Subset Simulation framework. Various numerical examples are then presented to showcase the performance of the aforementioned approaches.

Book Rare Event Simulation using Monte Carlo Methods

Download or read book Rare Event Simulation using Monte Carlo Methods written by Gerardo Rubino and published by John Wiley & Sons. This book was released on 2009-03-18 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. Graduate students, researchers and practitioners who wish to learn and apply rare event simulation techniques will find this book beneficial.

Book Handbook of Markov Chain Monte Carlo

Download or read book Handbook of Markov Chain Monte Carlo written by Steve Brooks and published by CRC Press. This book was released on 2011-05-10 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their popularization in the 1990s, Markov chain Monte Carlo (MCMC) methods have revolutionized statistical computing and have had an especially profound impact on the practice of Bayesian statistics. Furthermore, MCMC methods have enabled the development and use of intricate models in an astonishing array of disciplines as diverse as fisherie

Book Rare event Simulation with Markov Chain Monte Carlo

Download or read book Rare event Simulation with Markov Chain Monte Carlo written by and published by . This book was released on 2015 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Markov Chain Monte Carlo in Practice

Download or read book Markov Chain Monte Carlo in Practice written by W.R. Gilks and published by CRC Press. This book was released on 1995-12-01 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France,

Book Collection of Pamphlets Relating to Zoology and

Download or read book Collection of Pamphlets Relating to Zoology and written by and published by . This book was released on 1873 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Markov Chain Monte Carlo Posterior Sampling with the Hamiltonian Method

Download or read book Markov Chain Monte Carlo Posterior Sampling with the Hamiltonian Method written by and published by . This book was released on 2001 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: A major advantage of Bayesian data analysis is that provides a characterization of the uncertainty in the model parameters estimated from a given set of measurements in the form of a posterior probability distribution. When the analysis involves a complicated physical phenomenon, the posterior may not be available in analytic form, but only calculable by means of a simulation code. In such cases, the uncertainty in inferred model parameters requires characterization of a calculated functional. An appealing way to explore the posterior, and hence characterize the uncertainty, is to employ the Markov Chain Monte Carlo technique. The goal of MCMC is to generate a sequence random of parameter x samples from a target pdf (probability density function), [pi](x). In Bayesian analysis, this sequence corresponds to a set of model realizations that follow the posterior distribution. There are two basic MCMC techniques. In Gibbs sampling, typically one parameter is drawn from the conditional pdf at a time, holding all others fixed. In the Metropolis algorithm, all the parameters can be varied at once. The parameter vector is perturbed from the current sequence point by adding a trial step drawn randomly from a symmetric pdf. The trial position is either accepted or rejected on the basis of the probability at the trial position relative to the current one. The Metropolis algorithm is often employed because of its simplicity. The aim of this work is to develop MCMC methods that are useful for large numbers of parameters, n, say hundreds or more. In this regime the Metropolis algorithm can be unsuitable, because its efficiency drops as 0.3/n. The efficiency is defined as the reciprocal of the number of steps in the sequence needed to effectively provide a statistically independent sample from [pi].

Book Monte Carlo Methods

    Book Details:
  • Author : Neal Noah Madras
  • Publisher : American Mathematical Soc.
  • Release : 2000
  • ISBN : 0821819925
  • Pages : 238 pages

Download or read book Monte Carlo Methods written by Neal Noah Madras and published by American Mathematical Soc.. This book was released on 2000 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Workshop on Monte Carlo Methods held at The Fields Institute for Research in Mathematical Sciences (Toronto, 1998). The workshop brought together researchers in physics, statistics, and probability. The papers in this volume - of the invited speakers and contributors to the poster session - represent the interdisciplinary emphasis of the conference. Monte Carlo methods have been used intensively in many branches of scientific inquiry. Markov chain methods have been at the forefront of much of this work, serving as the basis of many numerical studies in statistical physics and related areas since the Metropolis algorithm was introduced in 1953. Statisticians and theoretical computer scientists have used these methods in recent years, working on different fundamental research questions, yet using similar Monte Carlo methodology. This volume focuses on Monte Carlo methods that appear to have wide applicability and emphasizes new methods, practical applications and theoretical analysis. It will be of interest to researchers and graduate students who study and/or use Monte Carlo methods in areas of probability, statistics, theoretical physics, or computer science.

Book Sequential Monte Carlo Methods in Practice

Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Book The Monte Carlo Methods

    Book Details:
  • Author : Abdo Abou Jaoudé
  • Publisher : BoD – Books on Demand
  • Release : 2022-03-09
  • ISBN : 1839687592
  • Pages : 234 pages

Download or read book The Monte Carlo Methods written by Abdo Abou Jaoudé and published by BoD – Books on Demand. This book was released on 2022-03-09 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: In applied mathematics, the name Monte Carlo is given to the method of solving problems by means of experiments with random numbers. This name, after the casino at Monaco, was first applied around 1944 to the method of solving deterministic problems by reformulating them in terms of a problem with random elements, which could then be solved by large-scale sampling. But, by extension, the term has come to mean any simulation that uses random numbers. Monte Carlo methods have become among the most fundamental techniques of simulation in modern science. This book is an illustration of the use of Monte Carlo methods applied to solve specific problems in mathematics, engineering, physics, statistics, and science in general.

Book Bayesian Filtering and Smoothing

Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Book Markov Chain Monte Carlo  Innovations And Applications

Download or read book Markov Chain Monte Carlo Innovations And Applications written by Wilfrid S Kendall and published by World Scientific. This book was released on 2005-11-08 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Chain Monte Carlo (MCMC) originated in statistical physics, but has spilled over into various application areas, leading to a corresponding variety of techniques and methods. That variety stimulates new ideas and developments from many different places, and there is much to be gained from cross-fertilization. This book presents five expository essays by leaders in the field, drawing from perspectives in physics, statistics and genetics, and showing how different aspects of MCMC come to the fore in different contexts. The essays derive from tutorial lectures at an interdisciplinary program at the Institute for Mathematical Sciences, Singapore, which exploited the exciting ways in which MCMC spreads across different disciplines.

Book Lectures on Monte Carlo Methods

Download or read book Lectures on Monte Carlo Methods written by Neal Noah Madras and published by Springer Science & Business. This book was released on 2002 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the ``curse of dimensionality'', which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathematical models that arise in diverse areas of application. The book is based on lectures in a graduate course given by the author. It examines theoretical properties of Monte Carlo methods as well as practical issues concerning their computer implementation and statistical analysis. The only formal prerequisite is an undergraduate course in probability. The book is intended to be accessible to students from a wide range of scientific backgrounds. Rather than being a detailed treatise, it covers the key topics of Monte Carlo methods to the depth necessary for a researcher to design, implement, and analyze a full Monte Carlo study of a mathematical or scientific problem. The ideas are illustrated with diverse running examples. There are exercises sprinkled throughout the text. The topics covered include computer generation of random variables, techniques and examples for variance reduction of Monte Carlo estimates, Markov chain Monte Carlo, and statistical analysis of Monte Carlo output.

Book Monte Carlo Methods

    Book Details:
  • Author : Malvin H. Kalos
  • Publisher : John Wiley & Sons
  • Release : 2009-06-10
  • ISBN : 3527626220
  • Pages : 215 pages

Download or read book Monte Carlo Methods written by Malvin H. Kalos and published by John Wiley & Sons. This book was released on 2009-06-10 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to Monte Carlo methods seeks to identify and study the unifying elements that underlie their effective application. Initial chapters provide a short treatment of the probability and statistics needed as background, enabling those without experience in Monte Carlo techniques to apply these ideas to their research. The book focuses on two basic themes: The first is the importance of random walks as they occur both in natural stochastic systems and in their relationship to integral and differential equations. The second theme is that of variance reduction in general and importance sampling in particular as a technique for efficient use of the methods. Random walks are introduced with an elementary example in which the modeling of radiation transport arises directly from a schematic probabilistic description of the interaction of radiation with matter. Building on this example, the relationship between random walks and integral equations is outlined. The applicability of these ideas to other problems is shown by a clear and elementary introduction to the solution of the Schrödinger equation by random walks. The text includes sample problems that readers can solve by themselves to illustrate the content of each chapter. This is the second, completely revised and extended edition of the successful monograph, which brings the treatment up to date and incorporates the many advances in Monte Carlo techniques and their applications, while retaining the original elementary but general approach.

Book Markov Chain Monte Carlo Methods in Quantum Field Theories

Download or read book Markov Chain Monte Carlo Methods in Quantum Field Theories written by Anosh Joseph and published by Springer Nature. This book was released on 2020-04-16 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer is a comprehensive collection of analytical and numerical techniques that can be used to extract the non-perturbative physics of quantum field theories. The intriguing connection between Euclidean Quantum Field Theories (QFTs) and statistical mechanics can be used to apply Markov Chain Monte Carlo (MCMC) methods to investigate strongly coupled QFTs. The overwhelming amount of reliable results coming from the field of lattice quantum chromodynamics stands out as an excellent example of MCMC methods in QFTs in action. MCMC methods have revealed the non-perturbative phase structures, symmetry breaking, and bound states of particles in QFTs. The applications also resulted in new outcomes due to cross-fertilization with research areas such as AdS/CFT correspondence in string theory and condensed matter physics. The book is aimed at advanced undergraduate students and graduate students in physics and applied mathematics, and researchers in MCMC simulations and QFTs. At the end of this book the reader will be able to apply the techniques learned to produce more independent and novel research in the field.

Book Markov Chain Importance Sampling with Applications to Rare Event Probability Estimation

Download or read book Markov Chain Importance Sampling with Applications to Rare Event Probability Estimation written by Zdravko I. Botev and published by . This book was released on 2011 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: