EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Guidance  Control and Trajectory Tracking of Small Fixed Wing Unmanned Aerial Vehicles  UAV s

Download or read book Guidance Control and Trajectory Tracking of Small Fixed Wing Unmanned Aerial Vehicles UAV s written by Amer A. Al-Radaideh and published by . This book was released on 2009 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Unmanned Aerial Vehicles (UAV's) have gained increasing considerations due to their low cost and increased autonomy. A large number of applications in the military and civilian fields. The present work considers a low level flight control algorithms (auto-pilot) to improve the guidance, path following and trajectory tracking capabilities of the low speed fixed wing AUS-UAV. In addition, this investigation aims the development and building of fully functioning test-bed UAV platform."--Abstract, p. iii.

Book Autonomous Take off and Landing for a Fixed Wing UAV

Download or read book Autonomous Take off and Landing for a Fixed Wing UAV written by Israel Lugo Cárdenas and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work studies some of the most relevant problems in the direction of navigation and control presented in a particular class of mini-aircraft. One of the main objectives is to build a lightweight and easy to deploy vehicle in a short period of time, an unmanned aerial vehicle capable of following a complete mission from take-o⁄ to the following waypoints and complete the mission with an autonomous landing within a delimitated area using a graphical interface in a computer. The Trajectory Generation It is the part that tells the drone where it must travel and are generated by an algorithm built into the drone. The classic result of Dubins is used as a basis for the trajectory generation in 2D and we have extended it to the 3D trajectory generation. A path following strategy developed using the Lyapunov approach is presented to pilot a fixed wing drone across the desired path. The key concept behind the tracking controller is the reduction of the distance between the center of mass of the aircraft p and the point q on the path to zero, as well as the angle between the velocity vector and the vector tangent to the path. In order to test the techniques developed during the thesis a customized C # .Net application was developed called MAV3DSim (Multi-Aerial Vehicle 3D Simulator). The MAV3DSim allows a read / write operation from / to the simulation engine from which we could receive all emulated sensor information and sent to the simulator. The MAV3DSim consists of three main elements, the simulation engine, the computation of the control law and the visualization interface. The simulation engine is in charge of the numeric integration of the dynamic equations of the vehicle, we can choose between a quadrotor and a xed wing drone for use in simulation. The visualization interface resembles a ground station type of application, where all variables of the vehicle s state vector can be represented on the same screen. The experimental platform functions as a test bed for the control law prototyping. The platform consists of a xed wing aircraft with a PX4 which has the autopilot function as well as a Raspberry PI mini-computer which to the implementation of the generation and trajectory tracking. The complete system is capable of performing an autonomous take-o⁄and landing, through waypoints. This is accomplished by using each of the strategies developed during the thesis. We have a strategy for take-o⁄ and landing, which is generated by the navigationon part that is the trajectory generator. Once we have generated the path, it is used by the trajectory tracking strategy and withthat we have landing and take-o⁄ autonomously.

Book Small Unmanned Aircraft

Download or read book Small Unmanned Aircraft written by Randal W. Beard and published by Princeton University Press. This book was released on 2012-02-26 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autonomous unmanned air vehicles (UAVs) are critical to current and future military, civil, and commercial operations. Despite their importance, no previous textbook has accessibly introduced UAVs to students in the engineering, computer, and science disciplines--until now. Small Unmanned Aircraft provides a concise but comprehensive description of the key concepts and technologies underlying the dynamics, control, and guidance of fixed-wing unmanned aircraft, and enables all students with an introductory-level background in controls or robotics to enter this exciting and important area. The authors explore the essential underlying physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning. The textbook leads the student from rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. To facilitate understanding, the authors have replaced traditional homework assignments with a simulation project using the MATLAB/Simulink environment. Students begin by modeling rigid-body dynamics, then add aerodynamics and sensor models. They develop low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms. The final chapter of the book focuses on UAV guidance using machine vision. Designed for advanced undergraduate or graduate students in engineering or the sciences, this book offers a bridge to the aerodynamics and control of UAV flight.

Book Nonlinear Control of Fixed Wing UAVs with Time Varying and Unstructured Uncertainties

Download or read book Nonlinear Control of Fixed Wing UAVs with Time Varying and Unstructured Uncertainties written by Michail G. Michailidis and published by Springer Nature. This book was released on 2020-02-21 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a comprehensive and mathematically rigorous controller design for families of nonlinear systems with time-varying parameters and unstructured uncertainties. Although the presented methodology is general, the specific family of systems considered is the latest, NextGen, unconventional fixed-wing unmanned aircraft with circulation control or morphing wings, or a combination of both. The approach considers various sources of model and parameter uncertainty, while the controller design depends not on a nominal plant model, but instead on a family of admissible plants. In contrast to existing controller designs that consider multiple models and multiple controllers, the proposed approach is based on the ‘one controller fits all models’ within the unstructured uncertainty interval. The book presents a modeling-based analysis and synthesis approach with additive uncertainty weighting functions for accurate realization of the candidate systems. This differs significantly from existing designs in that it is capable of handling time-varying characteristics. This research monograph is suitable for scientists, engineers, researchers and graduate students with a background in control system theory who are interested in complex engineering nonlinear systems.

Book Fault tolerant Flight Control and Guidance Systems

Download or read book Fault tolerant Flight Control and Guidance Systems written by Guillaume J. J. Ducard and published by Springer Science & Business Media. This book was released on 2009-05-14 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a complete overview of fault-tolerant flight control techniques. Discussion covers the necessary equations for the modeling of small UAVs, a complete system based on extended Kalman filters, and a nonlinear flight control and guidance system.

Book Encyclopedia of Robotics

Download or read book Encyclopedia of Robotics written by Marcelo H. Ang and published by Springer. This book was released on 2018-07-13 with total page 4000 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Robotics addresses the existing need for an easily accessible yet authoritative and granular knowledge resource in robotic science and engineering. The encyclopedia is a work that comprehensively explains the scientific, application-based, interactive and socio-ethical parameters of robotics. It is the first work that explains at the concept and fact level the state of the field of robotics and its future directions. The encyclopedia is a complement to Springer’s highly successful Handbook of Robotics that has analyzed the state of robotics through the medium of descriptive essays. Organized in an A-Z format for quick and easy understanding of both the basic and advanced topics across a broad spectrum of areas in a self-contained form. The entries in this Encyclopedia will be a comprehensive description of terms used in robotics science and technology. Each term, when useful, is described concisely with online illustrations and enhanced user interactivity (on SpringerReference.com).

Book Flight Formation Control

Download or read book Flight Formation Control written by Josep M. Guerrero and published by John Wiley & Sons. This book was released on 2012-12-17 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade the development and control of Unmanned Aerial Vehicles (UAVs) has attracted a lot of interest. Both researchers and companies have a growing interest in improving this type of vehicle given their many civilian and military applications. This book presents the state of the art in the area of UAV Flight Formation. The coordination and robust consensus approaches are presented in detail as well as formation flight control strategies which are validated in experimental platforms. It aims at helping students and academics alike to better understand what coordination and flight formation control can make possible. Several novel methods are presented: - controllability and observability of multi-agent systems; - robust consensus; - flight formation control; - stability of formations over noisy networks; which generate solutions of guaranteed performance for UAV Flight Formation. Contents 1. Introduction, J.A. Guerrero. 2. Theoretical Preliminaries, J.A. Guerrero. 3. Multiagent Coordination Strategies, J.A. Guerrero, R. Lozano, M.W. Spong, N. Chopra. 4. Robust Control Design for Multiagent Systems with Parametric Uncertainty, J.A. Guerrero, G. Romero. 5. On Adaptive and Robust Controlled Synchronization of Networked Robotic Systems on Strongly Connected Graphs, Y.-C. Liu, N. Chopra. 6. Modeling and Control of Mini UAV, G. Flores Colunga, J.A. Guerrero, J. Escareño, R. Lozano. 7. Flight Formation Control Strategies for Mini UAVs, J.A. Guerrero. 8. Formation Based on Potential Functions, L. García, A. Dzul. 9. Quadrotor Vision-Based Control, J.E. Gomez-Balderas, J.A. Guerrero, S. SALAZAR, R. Lozano, P. Castillo. 10. Toward Vision-Based Coordination of Quadrotor Platoons, L.R. García Carrillo, J.A. Guerrero, R. Lozano. 11. Optimal Guidance for Rotorcraft Platoon Formation Flying in Wind Fields, J.A. Guerrero, Y. Bestaoui, R. Lozano. 12. Impact of Wireless Medium Access Protocol on the Quadrotor Formation Control, J.A. Guerrero, Y. Challal, P. Castillo. 13. MAC Protocol for Wireless Communications, A. Mendez, M. Panduro, O. Elizarraras, D. Covarrubias. 14. Optimization of a Scannable Pattern for Bidimensional Antenna Arrays to Provide Maximum Performance, A. Reyna, M.A. Panduro, A. Mendez.

Book Maneuver Design and Motion Planning for Agile Fixed wing UAVs

Download or read book Maneuver Design and Motion Planning for Agile Fixed wing UAVs written by Joshua Levin and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "In recognition of their broad scope of utility, recent years have seen a surge of interest in unmanned aerial vehicles (UAVs). As a result of technological advancements, UAVs have been rapidly expanding into the civilian marketplace. Many of the jobs UAVs have the potential to fill demand high levels of autonomy, and thus the state-of-the-art is constantly being pushed forward. Many such jobs require near-ground autonomous flight through obstacle-dense environments. Achieving proficiency in this regard requires agile motion, precise tracking performance, and efficient real-time planning.Many non-traditional UAV platforms have been designed to suit various applications. Agile fixed-wing UAVs represent one such class of vehicles. They are characterized by their high thrust-to-weight ratio, large control surfaces, low aspect ratios, and a powerful propeller slipstream (also known as propwash). While they were originally marketed towards remote control pilots, their design makes them inherently valuable for autonomous flight. The primary appeal of the design is that it allows for both efficient fixed-wing forward flying and agile maneuvering, e.g. stopping mid-flight. In this way, these UAVs begin to bridge the gap in utility between efficient fixed-wing vehicles, and agile rotorcraft. The broad objective of this thesis is to exploit the full maneuvering capabilities of agile fixed-wing UAVs for autonomous flight. The main topics covered are maneuver design, control, and motion planning. The thesis begins with a discussion of preliminary topics: an aircraft dynamics model, a feedback controller, and an optimization framework, all of which are utilized throughout the following sections of the thesis. Next, an investigation is performed to evaluate the significance of sideslip and propeller slipstream in extreme maneuvering with fixed-wing UAVs. We identify the cost, in terms of performance loss, if either of these two phenomena are not accounted for in maneuver design.In the following chapter, we propose a strategy for designing and controlling agile maneuvers that takes advantage of the aircraft's full flight envelope. Optimal and dynamically feasible trajectories are generated, along with their associated feedforward control laws. Combining the transient agile maneuvers with steady-state trim conditions, we formulate a maneuver space, i.e. a library of trajectories. The maneuver space acts as a hybrid representation of the vehicle's dynamics, and as such is useful for efficient real-time motion planning. This chapter also includes a description of a heuristic for transitioning between maneuvers, and a methodology for continuously parametrizing agile maneuvers.As a natural progression towards the ultimate goal of the thesis, the maneuver space is integrated into a real-time motion planner based on the Rapidly-Exploring Random Trees (RRT) algorithm. The planner is used to address the problem of generating a dynamically feasible motion plan to guide the aircraft to a desired goal through a highly-constrained, three-dimensional environment. For the purposes of this thesis, the environment is assumed to be known, and to only contain static obstacles. The planning framework is able to exploit the aircraft's full maneuvering capabilities, and couples well with a control system for effective trajectory tracking.To conclude the main body of the thesis, simulation and flight test results are presented and discussed. The flight tests are performed in two sets. First, to perform a number of agile maneuvers, in isolation and in series. The experiments validate the feasibility of the maneuvers, and test the efficacy of the proposed control system. The second set of tests validate the real-time motion planner. All experiments, including the real-time motion planning, are implemented using only the sensors and computers mounted on-board the UAV." --

Book Small Unmanned Aircraft

    Book Details:
  • Author : Randal W. Beard
  • Publisher : Princeton University Press
  • Release : 2012-02-26
  • ISBN : 0691149216
  • Pages : 318 pages

Download or read book Small Unmanned Aircraft written by Randal W. Beard and published by Princeton University Press. This book was released on 2012-02-26 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes bibliographical references (p. [291]-298) and index.

Book Trajectory Tracking Control of a Quadrotor During Cooperative Operation Between UAV and UGV

Download or read book Trajectory Tracking Control of a Quadrotor During Cooperative Operation Between UAV and UGV written by Ajibola Fowowe and published by . This book was released on 2017 with total page 43 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent times, there has been an increase in the use and application of unmanned aerial vehicles (UAVs). UAVs are used for various operations ranging from military applications to civilian purposes such as traffic monitoring, photography, surveillance and others. Within the UAV family, rotorcrafts take precedence over the fixed wing aircraft especially because of their unique features such as vertical takeoff and landing, increased payload, high maneuverability and more. They can be used to perform dangerous tasks and access environments that pose danger to man such as observatory wood and building fire, military purposes etc. This project focused on one of the various applications of the UAVs; cooperative operations between UAVs and ground vehicles. Scenarios may arise where we need the UAV to take on independent surveillance task in an unknown environment. I present a complete solution for the visual navigation of a small-scale, low-cost quadrotor in unknown environments. My approach relies solely on a monocular camera as the main sensor and therefore does not need external tracking aids like GPS or visual markers. Computations are carried out on an external laptop that communicates over wireless LAN with the quadrotor using Robot Operating System (ROS). This approach consists of three major components: a monocular SLAM system for pose estimation, an extended Kalman filter, which includes a full model of the drone's flight and control dynamics to fuse and synchronize all available data and to compensate for delays arising from the communication process and the computations required and lastly, a PID controller to control the position and orientation of the drone. During the cooperative operation, the ground vehicle acts as the master, a mobile launch/landing pad for the UAV. Cooperative operation between mobile robots can be very critical in complex scenarios such as the UAV mapping out an area for obstacles and optimal navigation path for the UGV, also the UAV can be sent to areas inaccessible by the ground vehicle for observation and it returns back to the ground vehicle after this operation.

Book Advances in Aerospace Guidance  Navigation and Control

Download or read book Advances in Aerospace Guidance Navigation and Control written by Bogusław Dołęga and published by Springer. This book was released on 2017-12-15 with total page 735 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first three CEAS (Counsil of European Aerospace Societies) Specialist Conferences on Guidance, Navigation and Control (CEAS EuroGNC) were held in Munich, Germany in 2011, in Delft, Netherlands in 2013 and in Toulouse, France in 2017. The Warsaw University of Technology (WUT) and the Rzeszow University of Technology (RzUT) accepted the challenge of jointly organizing the 4th edition. The conference aims to promote scientific and technical excellence in the fields of Guidance, Navigation and Control (GNC) in aerospace and other fields of technology. The Conference joins together the industry with the academia research. This book covers four main topics: Guidance and Control, Control Theory Application, Navigation, UAV Control and Dynamic. The papers included focus on the most advanced and actual topics in guidance, navigation and control research areas: · Control theory, analysis, and design · ; Novel navigation, estimation, and tracking methods · Aircraft, spacecraft, missile and UAV guidance, navigation, and control · Flight testing and experimental results · Intelligent control in aerospace applications · Aerospace robotics and unmanned/autonomous systems · Sensor systems for guidance, navigation and control · Guidance, navigation, and control concepts in air traffic control systems For the 4th CEAS Specialist Conference on Guidance, Navigation and Control the International Technical Committee established a formal review process. Each paper was reviewed in compliance with good journal practices by independent and anonymous reviewers. At the end of the review process papers were selected for publication in this book.

Book Robot Operating System  ROS

Download or read book Robot Operating System ROS written by Anis Koubaa and published by Springer. This book was released on 2017-05-25 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second volume is a continuation of the successful first volume of this Springer book, and as well as addressing broader topics it puts a particular focus on unmanned aerial vehicles (UAVs) with Robot Operating System (ROS). Consisting of three types of chapters: tutorials, cases studies, and research papers, it provides comprehensive additional material on ROS and the aspects of developing robotics systems, algorithms, frameworks, and applications with ROS. ROS is being increasingly integrated in almost all kinds of robots and is becoming the de-facto standard for developing applications and systems for robotics. Although the research community is actively developing applications with ROS and extending its features, amount of literature references is not representative of the huge amount of work being done. The book includes 19 chapters organized into six parts: Part 1 presents the control of UAVs with ROS, while in Part 2, three chapters deal with control of mobile robots. Part 3 provides recent work toward integrating ROS with Internet, cloud and distributed systems. Part 4 offers five case studies of service robots and field experiments. Part 5 presents signal-processing tools for perception and sensing, and lastly, Part 6 introduces advanced simulation frameworks. The diversity of topics in the book makes it a unique and valuable reference resource for ROS users, researchers, learners and developers.

Book Dynamics of Flight

Download or read book Dynamics of Flight written by Bernard Etkin and published by John Wiley & Sons. This book was released on 1982 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of 2021 International Conference on Autonomous Unmanned Systems  ICAUS 2021

Download or read book Proceedings of 2021 International Conference on Autonomous Unmanned Systems ICAUS 2021 written by Meiping Wu and published by Springer Nature. This book was released on 2022-03-18 with total page 3575 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes original, peer-reviewed research papers from the ICAUS 2021, which offers a unique and interesting platform for scientists, engineers and practitioners throughout the world to present and share their most recent research and innovative ideas. The aim of the ICAUS 2021 is to stimulate researchers active in the areas pertinent to intelligent unmanned systems. The topics covered include but are not limited to Unmanned Aerial/Ground/Surface/Underwater Systems, Robotic, Autonomous Control/Navigation and Positioning/ Architecture, Energy and Task Planning and Effectiveness Evaluation Technologies, Artificial Intelligence Algorithm/Bionic Technology and Its Application in Unmanned Systems. The papers showcased here share the latest findings on Unmanned Systems, Robotics, Automation, Intelligent Systems, Control Systems, Integrated Networks, Modeling and Simulation. It makes the book a valuable asset for researchers, engineers, and university students alike.

Book Control and Obstacle Avoidance for Agile Fixed wing Aircraft

Download or read book Control and Obstacle Avoidance for Agile Fixed wing Aircraft written by Eitan Bulka and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Unmanned aerial vehicles (UAVs) have been increasingly proposed for aerial surveillance, mapping, and delivery tasks. Historically these vehicles fall into two categories: conventional fixed-wing aircraft, which are capable of efficient flight over long distances but lack maneuverability, and rotorcraft, which are capable of agile and maneuverable flight but lack efficiency and endurance. Recent advancements in aerial vehicle design aim to incorporate characteristics from both rotorcraft and conventional fixed-wing aircraft, ultimately creating aircraft that are capable of both maneuverable and efficient long distance flight. These type of platforms are ideal for tasks that require both the ability to maneuver through cluttered environments, and the ability to fly long distances efficiently. An aircraft of this type, the agile fixed-wing aircraft, is a fixed-wing aircraft characterized by a high thrust-to-weight ratio (> 1), and large control surfaces capable of large deflections.The objective of this thesis is to further the autonomous capabilities of agile fixed-wing aircraft; specifically in the context of control systems and real-time collision avoidance. The thesis begins with a discussion of a previously developed flight dynamics model, and presents a method for validating a flight dynamics model in flight regimes that rely on feedback control. Subsequently, a single control architecture is developed that can track trajectories within both conventional and aerobatic flight regimes. This architecture is then extended to be applicable to many other types of vehicles, specifically vehicles which can generate a torque in an arbitrary direction, and can apply a single body-fixed force. We demonstrate autonomous aerobatic trajectories with an agile fixed-wing aircraft, specifically knife-edge, rolling harrier, aggressive turnaround and hovering maneuvers within conventional simulations, hardware-in-the-loop simulations, indoor flight tests and outdoor flight tests. We also validate the extension to other platforms by demonstrating flips with a quadrotor in both simulation and outdoor flight tests. All flights were performed with on-board sensing and computation.We then present a reactive obstacle avoidance algorithm that utilizes the maneuvering capabilities of agile fixed-wing aircraft and can be run in real-time with on-board sensing and computation. At each time step, trajectories are selected in real-time from a pre-computed library that lead to various positions on the edge of the obstacle sensor's field-of-view. A cost is assigned to each collision-free trajectory based on its heading toward the goal and minimum distance to obstacles, and the lowest cost trajectory is tracked. If all of the potential trajectories leading to the various positions at the edge of the obstacle sensor's field-of-view result in a collision, the aircraft has enough space to hover and come to a stop, which theoretically guarantees collision-free flight in unknown static environments. Autonomous flight in unknown and unstructured environments using only on-board sensing (stereo camera, IMU, and GPS) and computation is demonstrated with an agile fixed-wing aircraft in both simulation and outdoor flight tests. During the flight testing campaign, the aircraft autonomously flew 4.4 km in a tree-filled environment with an average speed of 8.1 m/s and a top speed of 14.4 m/s"--

Book Control of Autonomous Aerial Vehicles

Download or read book Control of Autonomous Aerial Vehicles written by Andrea L'Afflitto and published by Springer Nature. This book was released on 2023-11-20 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control of Autonomous Aerial Vehicles is an edited book that provides a single-volume snapshot on the state of the art in the field of control theory applied to the design of autonomous unmanned aerial vehicles (UAVs), aka “drones”, employed in a variety of applications. The homogeneous structure allows the reader to transition seamlessly through results in guidance, navigation, and control of UAVs, according to the canonical classification of the main components of a UAV’s autopilot. Each chapter has been written to assist graduate students and practitioners in the fields of aerospace engineering and control theory. The contributing authors duly present detailed literature reviews, conveying their arguments in a systematic way with the help of diagrams, plots, and algorithms. They showcase the applicability of their results by means of flight tests and numerical simulations, the results of which are discussed in detail. Control of Autonomous Aerial Vehicles will interest readers who are researchers, practitioners or graduate students in control theory, autonomous systems or robotics, or in aerospace, mechanical or electrical engineering.

Book Controlling Small Fixed Wing UAVs to Optimize Image Quality from On Board Cameras

Download or read book Controlling Small Fixed Wing UAVs to Optimize Image Quality from On Board Cameras written by Stephen Phillip Jackson and published by . This book was released on 2011 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small UAVs have shown great promise as tools for collecting aerial imagery both quickly and cheaply. Furthermore, using a team of small UAVs, as opposed to one large UAV, has shown promise as being a cheaper, faster and more robust method for collecting image data over a large area. Unfortunately, the autonomy of small UAVs has not yet reached the point where they can be relied upon to collect good aerial imagery without human intervention, or supervision. The work presented here intends to increase the level of autonomy of small UAVs so that they can independently, and reliably collect quality aerial imagery. The main contribution of this paper is a novel approach to controlling small fixed wing UAVs that optimizes the quality of the images captured by cameras on board the aircraft. This main contribution is built on three minor contributions: a kinodynamic motion model for small fixed wing UAVs, an iterative Gaussian sampling strategy for rapidly exploring random trees, and a receding horizon, nonlinear model predictive controller for controlling a UAV's sensor footprint. The kinodynamic motion model is built on the traditional unicycle model of an aircraft. In order to create dynamically feasible paths, the kinodynamic motion model augments the kinetic unicycle model by adding a first order estimate of the aircraft's roll dynamics. Experimental data is presented that not only validates this novel kinodynamic motion model, but also shows a 25% improvement over the traditional unicycle model. A novel Gaussian biased sampling strategy is presented for building a rapidly exploring random tree that quickly iterates to a near optimal path. This novel sampling strategy does not require a method for calculating the nearest node to a point, which means that it runs much faster than the traditional RRT algorithm, but it still results in a Gaussian distribution of nodes. Furthermore, because it uses the kinodynamic motion model, the near optimal path it generates is, by definition, dynamically feasible. A nonlinear model predictive controller is presented to control the non-minimum phase problem of tracking a target on the ground from a UAV with a fixed camera. It is shown that this novel controller is probabilistically guaranteed to asymptotically converge to the path that minimizes the cross-track error of the UAV's sensor footprint. In addition, for a minimum phased problem, it is shown that its tracking performance is on par with a sliding mode controller, which at least theoretically, is capable of achieving perfect tracking. Finally, all three of these contributions are experimental validated by performing a variety of tracking tasks using the Berkeley Sig Rascal UAV.