EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Guaranteed Localization and Mapping for Autonomous Vehicles

Download or read book Guaranteed Localization and Mapping for Autonomous Vehicles written by Zhan Wang and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the rapid development and extensive applications of robot technology, the research on intelligent mobile robot has been scheduled in high technology development plan in many countries. Autonomous navigation plays a more and more important role in the research field of intelligent mobile robot. Localization and map building are the core problems to be solved by the robot to realize autonomous navigation. Probabilistic techniques (such as Extented Kalman Filter and Particle Filter) have long been used to solve the robotic localization and mapping problem. Despite their good performance in practical applications, they could suffer the inconsistency problem in the non linear, non Gaussian scenarios. This thesis focus on study the interval analysis based methods applied to solve the robotic localization and mapping problem. Instead of making hypothesis on the probability distribution, all the sensor noises are assumed to be bounded within known limits. Based on such foundation, this thesis formulates the localization and mapping problem in the framework of Interval Constraint Satisfaction Problem and applied consistent interval techniques to solve them in a guaranteed way. To deal with the “uncorrected yaw” problem encountered by Interval Constraint Propagation (ICP) based localization approaches, this thesis proposes a new ICP algorithm dealing with the real-time vehicle localization. The proposed algorithm employs a low-level consistency algorithm and is capable of heading uncertainty correction. Afterwards, the thesis presents an interval analysis based SLAM algorithm (IA-SLAM) dedicates for monocular camera. Bound-error parameterization and undelayed initialization for nature landmark are proposed. The SLAM problem is formed as ICSP and solved via interval constraint propagation techniques. A shaving method for landmark uncertainty contraction and an ICSP graph based optimization method are put forward to improve the obtaining result. Theoretical analysis of mapping consistency is also provided to illustrated the strength of IA-SLAM. Moreover, based on the proposed IA-SLAM algorithm, the thesis presents a low cost and consistent approach for outdoor vehicle localization. It works in a two-stage framework (visual teach and repeat) and is validated with a car-like vehicle equipped with dead reckoning sensors and monocular camera.

Book Vision Based Estimation  Localization  and Mapping for Autonomous Vehicles

Download or read book Vision Based Estimation Localization and Mapping for Autonomous Vehicles written by Junho Yang and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simultaneous Localization and Mapping

Download or read book Simultaneous Localization and Mapping written by Zhan Wang and published by World Scientific. This book was released on 2011 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simultaneous localization and mapping (SLAM) is a process where an autonomous vehicle builds a map of an unknown environment while concurrently generating an estimate for its location. This book is concerned with computationally efficient solutions to the large scale SLAM problems using exactly sparse Extended Information Filters (EIF). The invaluable book also provides a comprehensive theoretical analysis of the properties of the information matrix in EIF-based algorithms for SLAM. Three exactly sparse information filters for SLAM are described in detail, together with two efficient and exact methods for recovering the state vector and the covariance matrix. Proposed algorithms are extensively evaluated both in simulation and through experiments.

Book Creating Autonomous Vehicle Systems

Download or read book Creating Autonomous Vehicle Systems written by Shaoshan Liu and published by Morgan & Claypool Publishers. This book was released on 2017-10-25 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.

Book Robot Localization and Map Building

Download or read book Robot Localization and Map Building written by Hanafiah Yussof and published by BoD – Books on Demand. This book was released on 2010-03-01 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Localization and mapping are the essence of successful navigation in mobile platform technology. Localization is a fundamental task in order to achieve high levels of autonomy in robot navigation and robustness in vehicle positioning. Robot localization and mapping is commonly related to cartography, combining science, technique and computation to build a trajectory map that reality can be modelled in ways that communicate spatial information effectively. This book describes comprehensive introduction, theories and applications related to localization, positioning and map building in mobile robot and autonomous vehicle platforms. It is organized in twenty seven chapters. Each chapter is rich with different degrees of details and approaches, supported by unique and actual resources that make it possible for readers to explore and learn the up to date knowledge in robot navigation technology. Understanding the theory and principles described in this book requires a multidisciplinary background of robotics, nonlinear system, sensor network, network engineering, computer science, physics, etc.

Book Interlacing Self Localization  Moving Object Tracking and Mapping for 3D Range Sensors

Download or read book Interlacing Self Localization Moving Object Tracking and Mapping for 3D Range Sensors written by Frank Moosmann and published by KIT Scientific Publishing. This book was released on 2014-05-13 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents a solution for autonomous vehicles to detect arbitrary moving traffic participants and to precisely determine the motion of the vehicle. The solution is based on three-dimensional images captured with modern range sensors like e.g. high-resolution laser scanners. As result, objects are tracked and a detailed 3D model is built for each object and for the static environment. The performance is demonstrated in challenging urban environments that contain many different objects.

Book Precise Localization in 3D Prior Map for Autonomous Driving

Download or read book Precise Localization in 3D Prior Map for Autonomous Driving written by Mohamed Lamine Tazir and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of self-driving vehicles is becoming a happening reality and will soon share our roads with other vehicles -autonomous or not-. For a self-driving car to move around in its environment in a securely, it needs to sense to its immediate environment and most importantly localize itself to be able to plan a safe trajectory to follow. Therefore, to perform tasks suchas trajectory planning and navigation, a precise localization is of upmost importance. This would further allow the vehicle toconstantly plan and predict an optimal path in order to weave through cluttered spaces by avoiding collisions with other agentssharing the same space as the latter. For years, the Global Positioning System (GPS) has been a widespread complementary solution for navigation. The latter allows only a limited precision (range of several meters). Although the Differential GPSand the Real Time Kinematic (RTK) systems have reached considerable accuracy, these systems remain sensitive to signal masking and multiple reflections, offering poor reliability in dense urban areas. All these deficiencies make these systems simply unsuitable to handle hard real time constraints such as collision avoidance. A prevailing alternative that has attracted interest recently, is to use upload a prior map in the system so that the agent can have a reliable support to lean on. Indeed,maps facilitate the navigation process and add an extra layer of security and other dimensions of semantic understanding. The vehicle uses its onboard sensors to compare what it perceives at a given instant to what is stored in the backend memory ofthe system. In this way, the autonomous vehicle can actually anticipate and predict its actions accordingly.The purpose of this thesis is to develop tools allowing an accurate localization task in order to deal with some complex navigation tasks outlined above. Localization is mainly performed by matching a 3D prior map with incoming point cloudstructures as the vehicle moves. Three main objectives are set out leading with two distinct phases deployed (the map building and the localization). The first allows the construction of the map, with centimeter accuracy using static or dynamic laser surveying technique. Explicit details about the experimental setup and data acquisition campaigns thoroughly carried outduring the course of this work are given. The idea is to construct efficient maps liable to be updated in the long run so thatthe environment representation contained in the 3D models are compact and robust. Moreover, map-building invariant on any dedicated infrastructure is of the paramount importance of this work in order to rhyme with the concept of flexible mapping and localization. In order to build maps incrementally, we rely on a self-implementation of state of the art iterative closest point (ICP) algorithm, which is then upgraded with new variants and compared to other implemented versions available inthe literature. However, obtaining accurate maps requires very dense point clouds, which make them inefficient for real-time use. Inthis context, the second objective deals with points cloud reduction. The proposed approach is based on the use of both colorinformation and the geometry of the scene. It aims to find sets of 3D points with the same color in a very small region and replacing each set with one point. As a result, the volume of the map will be significantly reduced, while the proprieties of this map such as the shape and color of scanned objects remain preserved.The third objective resort to efficient, precise and reliable localization once the maps are built and treated. For this purpose, the online data should be accurate, fast with low computational effort whilst maintaining a coherent model of the explored space. To this end, the Velodyne HDL-32 comes into play. (...).

Book Collaborative Concurrent Mapping and Localization

Download or read book Collaborative Concurrent Mapping and Localization written by John William Fenwick and published by . This book was released on 2001 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robot Localization and Map Building

Download or read book Robot Localization and Map Building written by Hanafiah Yussof and published by IntechOpen. This book was released on 2010-03-01 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Localization and mapping are the essence of successful navigation in mobile platform technology. Localization is a fundamental task in order to achieve high levels of autonomy in robot navigation and robustness in vehicle positioning. Robot localization and mapping is commonly related to cartography, combining science, technique and computation to build a trajectory map that reality can be modelled in ways that communicate spatial information effectively. This book describes comprehensive introduction, theories and applications related to localization, positioning and map building in mobile robot and autonomous vehicle platforms. It is organized in twenty seven chapters. Each chapter is rich with different degrees of details and approaches, supported by unique and actual resources that make it possible for readers to explore and learn the up to date knowledge in robot navigation technology. Understanding the theory and principles described in this book requires a multidisciplinary background of robotics, nonlinear system, sensor network, network engineering, computer science, physics, etc.

Book Robot Localization and Map Building

Download or read book Robot Localization and Map Building written by Hanafiah Yussof and published by IntechOpen. This book was released on 2010-03-01 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Localization and mapping are the essence of successful navigation in mobile platform technology. Localization is a fundamental task in order to achieve high levels of autonomy in robot navigation and robustness in vehicle positioning. Robot localization and mapping is commonly related to cartography, combining science, technique and computation to build a trajectory map that reality can be modelled in ways that communicate spatial information effectively. This book describes comprehensive introduction, theories and applications related to localization, positioning and map building in mobile robot and autonomous vehicle platforms. It is organized in twenty seven chapters. Each chapter is rich with different degrees of details and approaches, supported by unique and actual resources that make it possible for readers to explore and learn the up to date knowledge in robot navigation technology. Understanding the theory and principles described in this book requires a multidisciplinary background of robotics, nonlinear system, sensor network, network engineering, computer science, physics, etc.

Book Digital Map Based Navigation System For Autonomous Vehicle with DGPS Localization

Download or read book Digital Map Based Navigation System For Autonomous Vehicle with DGPS Localization written by Balasubramaniam Ramakrishnan and published by . This book was released on 2012 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: Autonomous Vehicles (AV) can navigate itself from point A to point B without the aid of humans. Research on autonomous vehicles were primarily focused on the localization, navigation and path planning schemes. This led to numerous methods in each of the elds of focus. This research focuses on creating a scheme for the autonomous vehicle to navigate using minimal sensors and get maximum data/infor- mation from the map. At rst a digital map contains various structures and each has an associated database. This database contains the details of the environment. At present these data are manipulated for use by humans and for this map to be used with autonomous vehicle require more sensors. This work designs maps for use with autonomous vehicle and navigates using di erential GPS (dGPS) of high accuracy for localization. Then the vehicle gets path and directions from digital map and nav- igates using multiple waypoints that are provided by the path. Finally, the scheme is tested and demonstrated through simulation and test results.

Book Sensor Fusion in Localization  Mapping and Tracking

Download or read book Sensor Fusion in Localization Mapping and Tracking written by Constantin Wellhausen and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making autonomous driving possible requires extensive information about the surroundings as well as the state of the vehicle. While specific information can be obtained through singular sensors, a full estimation requires a multi sensory approach, including redundant sources of information to increase robustness. This thesis gives an overview of tasks that arise in sensor fusion in autonomous driving, and presents solutions at a high level of detail, including derivations and parameters where required to enable re-implementation. The thesis includes theoretical considerations of the approaches as well as practical evaluations. Evaluations are also included for approaches that did not prove to solve their tasks robustly. This follows the belief that both results further the state of the art by giving researchers ideas about suitable and unsuitable approaches, where otherwise the unsuitable approaches may be re-implemented multiple times with similar results. The thesis focuses on model-based methods, also referred to in the following as classical methods, with a special focus on probabilistic and evidential theories. Methods based on deep learning are explicitly not covered to maintain explainability and robustness which would otherwise strongly rely on the available training data. The main focus of the work lies in three main fields of autonomous driving: localization, which estimates the state of the ego-vehicle, mapping or obstacle detection, where drivable areas are identified, and object detection and tracking, which estimates the state of all surrounding traffic participants. All algorithms are designed with the requirements of autonomous driving in mind, with a focus on robustness, real-time capability and usability of the approaches in all potential scenarios that may arise in urban driving. In localization the state of the vehicle is determined. While traditionally global positioning systems such as a Global Navigation Satellite System (GNSS) are often used for this task, they are prone to errors and may produce jumps in the position estimate which may cause unexpected and dangerous behavior. The focus of research in this thesis is the development of a localization system which produces a smooth state estimate without any jumps. For this two localization approaches are developed and executed in parallel. One localization is performed without global information to avoid jumps. This however only provides odometry, which drifts over time and does not give global positioning. To provide this information the second localization includes GNSS information, thus providing a global estimate which is free of global drift. Additionally the use of LiDAR odometry for improving the localization accuracy is evaluated. For mapping the focus of this thesis is on providing a computationally efficient mapping system which is capable of being used in arbitrarily large areas with no predefined size. This is achieved by mapping only the direct environment of the vehicle, with older information in the map being discarded. This is motivated by the observation that the environment in autonomous driving is highly dynamic and must be mapped anew every time the vehicles sensors observe an area. The provided map gives subsequent algorithms information about areas where the vehicle can or cannot drive. For this an occupancy grid map is used, which discretizes the map into cells of a fixed size, with each cell estimating whether its corresponding space in the world is occupied. However the grid map is not created for the entire area which could potentially be visited, as this may be very large and potentially impossible to represent in the working memory. Instead the map is created only for a window around the vehicle, with the vehicle roughly in the center. A hierarchical map organization is used to allow efficient moving of the window as the vehicle moves through an area. For the hierarchical map different data structures are evaluated for their time and space complexity in order to find the most suitable implementation for the presented mapping approach. Finally for tracking a late-fusion approach to the multi-sensor fusion task of estimating states of all other traffic participants is presented. Object detections are obtained from LiDAR, camera and Radar sensors, with an additional source of information being obtained from vehicle-to-everything communication which is also fused in the late fusion. The late fusion is developed for easy extendability and with arbitrary object detection algorithms in mind. For the first evaluation it relies on black box object detections provided by the sensors. In the second part of the research in object tracking multiple algorithms for object detection on LiDAR data are evaluated for the use in the object tracking framework to ease the reliance on black box implementations. A focus is set on detecting objects from motion, where three different approaches are evaluated for motion estimation in LiDAR data: LiDAR optical flow, evidential dynamic mapping and normal distribution transforms. The thesis contains both theoretical contributions and practical implementation considerations for the presented approaches with a high degree of detail including all necessary derivations. All results are implemented and evaluated on an autonomous vehicle and real-world data. With the developed algorithms autonomous driving is realized for urban areas.

Book Autonomous Road Vehicles Localization Using Satellites  Lane Markings and Vision

Download or read book Autonomous Road Vehicles Localization Using Satellites Lane Markings and Vision written by Zui Tao and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimating the pose (position and attitude) in real-time is a key function for road autonomous vehicles. This thesis aims at studying vehicle localization performance using low cost automotive sensors. Three kinds of sensors are considered : dead reckoning (DR) sensors that already exist in modern vehicles, mono-frequency GNSS (Global navigation satellite system) receivers with patch antennas and a frontlooking lane detection camera. Highly accurate maps enhanced with road features are also key components for autonomous vehicle navigation. In this work, a lane marking map with decimeter-level accuracy is considered. The localization problem is studied in a local East-North-Up (ENU) working frame. Indeed, the localization outputs are used in real-time as inputs to a path planner and a motion generator to make a valet vehicle able to drive autonomously at low speed with nobody on-board the car. The use of a lane detection camera makes possible to exploit lane marking information stored in the georeferenced map. A lane marking detection module detects the vehicle's host lane and provides the lateral distance between the detected lane marking and the vehicle. The camera is also able to identify the type of the detected lane markings (e.g., solid or dashed). Since the camera gives relative measurements, the important step is to link the measures with the vehicle's state. A refined camera observation model is proposed. It expresses the camera metric measurements as a function of the vehicle's state vector and the parameters of the detected lane markings. However, the use of a camera alone has some limitations. For example, lane markings can be missing in some parts of the navigation area and the camera sometimes fails to detect the lane markings in particular at cross-roads. GNSS, which is mandatory for cold start initialization, can be used also continuously in the multi-sensor localization system as done often when GNSS compensates for the DR drift. GNSS positioning errors can't be modeled as white noises in particular with low cost mono-frequency receivers working in a standalone way, due to the unknown delays when the satellites signals cross the atmosphere and real-time satellites orbits errors. GNSS can also be affected by strong biases which are mainly due to multipath effect. This thesis studies GNSS biases shaping models that are used in the localization solver by augmenting the state vector. An abrupt bias due to multipath is seen as an outlier that has to be rejected by the filter. Depending on the information flows between the GNSS receiver and the other components of the localization system, data-fusion architectures are commonly referred to as loosely coupled (GNSS fixes and velocities) and tightly coupled (raw pseudoranges and Dopplers for the satellites in view). This thesis investigates both approaches. In particular, a road-invariant approach is proposed to handle a refined modeling of the GNSS error in the loosely coupled approach since the camera can only improve the localization performance in the lateral direction of the road. Finally, this research discusses some map-matching issues for instance when the uncertainty domain of the vehicle state becomes large if the camera is blind. It is challenging in this case to distinguish between different lanes when the camera retrieves lane marking measurements.As many outdoor experiments have been carried out with equipped vehicles, every problem addressed in this thesis is evaluated with real data. The different studied approaches that perform the data fusion of DR, GNSS, camera and lane marking map are compared and several conclusions are drawn on the fusion architecture choice.

Book Self Localization of Autonomous Vehicles Using Landmark Object Detection

Download or read book Self Localization of Autonomous Vehicles Using Landmark Object Detection written by Juan Carlo Rebanal and published by . This book was released on 2020 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fully autonomous vehicles are rapidly approaching realization and concerns regarding their safety and robustness are a prominent obstacle to their integration into society. A bottleneck of an autonomous vehicle's safety is its ability to self-localize under all types of conditions. Self-localization is critical for the vehicle to route to a destination, for the vehicle itself to be tracked in case of theft, and in determining local traffic laws to operate harmoniously with other traffic and pedestrians. The global positioning system (GPS) is utilized by autonomous vehicles for self-localization, but the availability and reliability of GPS is not guaranteed in all situations, such as when GPS reception is weak or when an adversary is spoofing information. We address this problem by proposing a self-localization method for autonomous vehicles that does not require GPS at localization time. The framework herein describes the representation of a road network as a graph using the data made available by OpenStreetMap, and an encoding of street segments based on detected landmark objects. We derive the current state observer transition function from the resulting graph, and employ localization methods based on set distance and minimum cost paths to determine the most probable location of the vehicle given a sequence of observed landmarks. Through simulating vehicle traveling paths along a road network generated from real data of a region of Washington D.C., we evaluate the performance of our method for varying degrees of landmark observation error and analyze the algorithm's time and memory complexity, demonstrating that the approach provides a feasible solution to the problem.