EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Guaranteed Computational Methods for Self Adjoint Differential Eigenvalue Problems

Download or read book Guaranteed Computational Methods for Self Adjoint Differential Eigenvalue Problems written by Xuefeng Liu and published by Springer Nature. This book was released on with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Solution of a Non self adjoint Differential Eigenvalue Problem

Download or read book Numerical Solution of a Non self adjoint Differential Eigenvalue Problem written by H. Bruun Nielsen and published by . This book was released on 1977 with total page 29 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Precision Methods in Eigenvalue Problems and Their Applications

Download or read book High Precision Methods in Eigenvalue Problems and Their Applications written by Leonid D. Akulenko and published by CRC Press. This book was released on 2004-10-15 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a survey of analytical, asymptotic, numerical, and combined methods of solving eigenvalue problems. It considers the new method of accelerated convergence for solving problems of the Sturm-Liouville type as well as boundary-value problems with boundary conditions of the first, second, and third kind. The authors also present high

Book Numerical Verification Methods and Computer Assisted Proofs for Partial Differential Equations

Download or read book Numerical Verification Methods and Computer Assisted Proofs for Partial Differential Equations written by Mitsuhiro T. Nakao and published by Springer Nature. This book was released on 2019-11-11 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a “theoretical” proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form -∆u=f(x,u,∇u) with Dirichlet boundary conditions. Here, by “verified computation” is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors’ methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Book Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self Adjoint Boundary Value Problems

Download or read book Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self Adjoint Boundary Value Problems written by M. Engeli and published by Birkhauser. This book was released on 1980-01-01 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Methods for General and Structured Eigenvalue Problems

Download or read book Numerical Methods for General and Structured Eigenvalue Problems written by Daniel Kressner and published by Springer Science & Business Media. This book was released on 2006-01-20 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.

Book Numerical Methods for Large Eigenvalue Problems

Download or read book Numerical Methods for Large Eigenvalue Problems written by Yousef Saad and published by SIAM. This book was released on 2011-01-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.

Book An Optimal Method of Computing the Eigenvalues of the Selfadjoint Eigenvalue Problem for the Ordinary Differential Equations

Download or read book An Optimal Method of Computing the Eigenvalues of the Selfadjoint Eigenvalue Problem for the Ordinary Differential Equations written by Teresa Regińska and published by . This book was released on 1970 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Methods in Structural Dynamics

Download or read book Computational Methods in Structural Dynamics written by L. Meirovitch and published by Springer Science & Business Media. This book was released on 1980-10-31 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ordinary Differential Equations and Integral Equations

Download or read book Ordinary Differential Equations and Integral Equations written by C.T.H. Baker and published by Elsevier. This book was released on 2001-06-20 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods).John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?"Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices.The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour.Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems.Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions.Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions.Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods.Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory.Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages.Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields.Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems.Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems.Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems.Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions.The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect.Many phenomena incorporate noise, and the numerical solution of

Book Bounds for the Eigenvalues of a Matrix

Download or read book Bounds for the Eigenvalues of a Matrix written by Kenneth R. Garren and published by . This book was released on 1968 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Basis Sets in Computational Chemistry

Download or read book Basis Sets in Computational Chemistry written by Eva Perlt and published by Springer Nature. This book was released on 2021-05-06 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the construction and application of the major types of basis sets for computational chemistry calculations. In addition to a general introduction, it includes mathematical basics and a discussion of errors arising from incomplete or inappropriate basis sets. The different chapters introduce local orbitals and orbital localization as well as Slater-type orbitals and review basis sets for special applications, such as those for correlated methods, solid-state calculations, heavy atoms and time-dependent adaptable Gaussian bases for quantum dynamics simulations. This detailed review of the purpose of basis sets, their design, applications, possible problems and available solutions provides graduate students and beginning researchers with information not easily obtained from the available textbooks and offers valuable supporting material for any quantum chemistry or computational chemistry course at the graduate and/or undergraduate level. This book is also useful as a guide for researchers who are new to computational chemistry but are willing to extend their research tools by applying such methods.

Book Novel Computational Methods for Eigenvalue Problems

Download or read book Novel Computational Methods for Eigenvalue Problems written by and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : This dissertation focuses on novel computational method for eigenvalue problems. In Chapter 1, preliminaries of functional analysis related to eigenvalue problems are presented. Some classical methods for matrix eigenvalue problems are discussed. Several PDE eigenvalue problems are covered. The chapter is concluded with a summary of the contributions. In Chapter 2, a novel recursive contour integral method (RIM) for matrix eigenvalue problem is proposed. This method can effectively find all eigenvalues in a region on the complex plane with no a priori spectrum information. Regions that contain eigenvalues are subdivided and tested recursively until the size of region reaches specified precision. The method is robust, which is demonstrated using various examples. In Chapter 3, we propose an improved version of RIM for non-Hermitian eigenvalue problems, called SIM-M. By incorporating Cayley transformation and Arnoldi's method, the main computation cost of solving linear systems is reduced significantly. The numerical experiments demonstrate that RIM-M gains significant speed-up over RIM. In Chapter 4, we propose a multilevel spectral indicator method (SIM-M) to address the memory requirement for large sparse matrices. We modify the indicator of RIM-M such that it requires much less memory. Matrices from University of Florida Sparse Matrix Collection are tested, suggesting that a parallel version of SIM-M has the potential to be efficient. In Chapter 5, we develop a novel method to solve the elliptic PDE eigenvalue problem. We construct a multi-wavelet basis with Riesz stability in H1 0 ( ). By incorporating multi-grid discretization scheme and sparse grids, the method retains the optimal convergence rate for the smallest eigenvalue with much less computational cost.

Book Inverse Eigenvalue Problems

Download or read book Inverse Eigenvalue Problems written by Moody Chu and published by Oxford University Press. This book was released on 2005-06-16 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.

Book Computational Methods for Nonlinear Elliptic Eigenvalue Problems

Download or read book Computational Methods for Nonlinear Elliptic Eigenvalue Problems written by Shirley Barbara Pomeranz and published by . This book was released on 1987 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: