EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Growth of 3C SiC Via a Hot wall CVD Reactor

Download or read book Growth of 3C SiC Via a Hot wall CVD Reactor written by Suzie Harvey and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: The heteroepitaxial growth of cubic silicon carbide (3C-SiC) on silicon (Si) substrates at high growth rates, via a horizontal hot-wall chemical vapor deposition (CVD) reactor, has been achieved. The final growth process was developed in three stages; an initial "baseline" development stage, an optimization stage, and a large area growth stage. In all cases the growth was conducted using a two step, carbonization plus growth, process. During carbonization, the surface of the Si is converted to 3C-SiC, which helps to minimize the stress in the growing crystal. Propane (C3H8) and silane (SiH4), diluted in hydrogen (H2), were used as the carbon and silicon source, respectively. A deposition rate of approximately 10 um/h was established during the baseline process. Once the baseline process proved to be repeatable, optimization of the process began. Through variations in temperature, pressure, and the Si/C ratio, thick 3C-SiC films (up to 22 um thick) and high deposition rates (up to 30 um/h) were obtained. The optimized process was then applied to growth on 50 mm diameter Si(100) wafers. The grown 3C-SiC films were analyzed using a variety of characterization techniques. The thickness of the films was assessed through Fourier Transform infrared (FTIR) spectroscopy, and confirmed by cross-section scanning electron microscopy (SEM). The SEM cross-sections were also used to investigate the 3C-SiC/Si interface. The surface morphology of the films was inspected via Nomarsky interference optical microscopy, atomic force microscopy (AFM), and SEM. The crystalline quality of the films was determined through X-ray diffraction (XRD) and low-temperature photoluminescence (LTPL) analysis. A mercury probe was used to make non-contact CV/IV measurements and determine the film doping.

Book Growth of 3C SiC on  111 Si Using Hot wall Chemical Vapor Deposition

Download or read book Growth of 3C SiC on 111 Si Using Hot wall Chemical Vapor Deposition written by Christopher Locke and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: The heteroepitaxial growth of cubic silicon carbide أ-سىأ) َُ(١١١) ٱىىٌك َُ(سى) ٱ�قٱفْٰمٰٱ، �ىف ف وىُْ“فَُٰ ٌو-ُٰ�ف ٌٌكومىٍكف ٌ�ف ُِْلمٱُِىىٰ َُ(أضؤ) مْفك،ُْٰ وفٱ قمم َفكوىم�مل. ا�ُْوٰ �فٱ كلَُ�كمٰل �ٱىهَ ف �ٰ ُٱمٰ ِكُِْمٱٱ: نىٱْ ٰوٰم سى ٱ�قٱفْٰمٰ ٱ�نْفكم ىٱ ك�َُممْٰل ُٰسىأ �ىف ف كفقْىَُ“فىٰ َُكُِْمٱٱ فلَ ٱمكلَُ وٰم ه�ُْوٰ نُ ٣أ-سىأ ىٱ مِنْمٍُْل َُوٰم ىىَىٰف ٌكفقْىَُ“مل فٌ”م.ْ ؤ�ىْهَ كفقْىَُ“فىٰ،َُ وٰم ٱ�نْفكم نُ وٰم سى ىٱ ك�َُممْٰل ُٰ٣أ-سىأ، �وىكو ومٱٌِ ُٰىٍىَىٍ“م وٰم ٱمْٰٱٱ ى َوٰم ه�ُْىهَ ك”ْٱفٰ.ٌ ذفُِْمَ (أ٣ب٨) فلَ ٱىفٌمَ (سىب٤)، لى�ٌمٰل ى َو”لهُْم َ(ب٢)، �ممْ �ٱمل فٱ وٰم كفقْ َُفلَ ٱىىٌك َُٱ�ُكْم، مْٱمِكىٰ�م”ٌ. ء لمٱُِىىٰ َُفْمٰ نُ ف٬ُِِْىفٍمٰ”ٌ ١٠ �ơ/ٍو �فٱ مٱفٰقىٌٱومل ل�ىْهَ وٰم ىىَىٰف ٌكُِْمٱٱ ف ٰف مٰمٍِفْ�ٰمْ نُ �١٣٨٠ ℗ʻأ. شوم ىُِٰىٍ“مل كُِْمٱٱ لُِْ�كمل نىٱٌٍ �ىوٰ ظ-فْ” كُْىًهَ ك��ْم ن�-ٌٌ�ىلوٰ ف ٰوفنٌ-فٍ٬ى�ٍ ٍ(ئطبح) �ف�ٌمٱ نُ ٢١٩ فكْٱمك، �وىكو ىٱ ٱىهىَنىكف”ٌَٰ قممٰٰ ْوٰف َف”َ وُٰم ْ�ِقىٌٱومل مْٱ�ٱٌٰ ى َوٰم ىٌمٰفْ�ٰمْ. دكَم وٰىٱ كُِْمٱٱ �فٱ لم�ممٌُِل ف �ٌُم ْمٰمٍِفْ�ٰمْ كُِْمٱٱ �فٱ لم�ممٌُِل ف ٰف ٱ�ٌُم ْه�ُْوٰ فْمٰ نُ �٢ �ơ/ٍو ف ٰ١٢٢٥ ℗ʻأ. شوم ك”ْٱفٰ ٌ�ّفىٌ”ٰ �فٱ ىنَمىْ ُْف ٰوٰم مْل�كمل مٰمٍِفْ�ٰمْ ق� ٰوٰىٱ مَ� كُِْمٱٱ ف�ٌٌُٱ ن ُْوٰم ه�ُْوٰ نُ ٣أ-سىأ(١١١) نىٱٌٍ َُ٬ُىلم مْمٌفٱم فٌ”مٱْ ن ُْحإحس فىٌِِكفىٰٱَُ. ة َفللىىٰ،َُ ن ُْممٌكىَُْٰك لم�ىكم فىٌِِكفىٰٱَُ، ف �ٌُم ْمٰمٍِفْ�ٰمْ كُِْمٱٱ مْل�كمٱ وٰم هممَفْىٰ َُنُ لمنمكٱٰ كف�ٱمل ق” وٰم مَف”ٌْ ٨ ٪ ىٍٱفٍكٰو ى َوٰم كمُننىكىم َٰنُ وٰمفٍْ ٌم٬فِٱَى َُ(أشإ) قم�ٰمم َ٣أ-سىأ فلَ سى. ئىفَ”ٌٌ ف مَ� كُِْمٱٱ �ٱىهَ ف ”ٌُِ-سى ٱممل فٌ”م ْلمٱُِىمٰل َُف َ٬ُىلم-كفُمٰل سى �فنم ْ�فٱ �ٱمل ُٰن ٍُْ٣أ-سىأ نىٱٌٍ ن ُْحإحس فىٌِِكفىٰٱَُ. شوم مْٱ�ٱٌٰ ىلَىكفمٰل ىىَىٰف”ٌٌ وٰف ٰوٰم نىٱٌٍ فٍ” م�م َقم كٍَُُ”ْٱفٰىٌٌمَ (قفٱمل َُظ-فْ” م�ف�ٌفىٰ)َُ ق� ٰفٌمٰ ْففَ”ٌٱىٱ مِنْمٍُْل �ٱىهَ شإح ىلَىكفمٰل وٰم” �ممْ وىهو”ٌ-لُْممْل ”ٌُِك”ْٱفٰىٌٌمَ نىٱٌٍ. شوم ه�ُْ َ٣أ-سىأ نىٱٌٍ �ممْ ففَ”ٌ“مل �ٱىهَ ف �فىْم”ٰ نُ كوففْكمٰىْ“فىٰ َُمٰكوىَ�ّمٱ. شوم وٰىكمًَٱٱ نُ وٰم نىٱٌٍ �فٱ فٱٱمٱٱمل وٰ�ُْهو ئ�ُىْم ْشفْٱَن ٍُْىنَفْمْل (ئشةز) ٱمِكٱُْٰك”ُِ، فلَ كنَُىمٍْل (ى َوٰم كفٱم نُ ه�ُْوٰ َُ”ٌُِ-سى ٱممل فٌ”مٱْ) ق” كٱُْٱ-ٱمكىٰ َُٱكفىََهَ ممٌك َُْٰىٍكٱُْك”ُِ (سإح). شوم سإح كٱُْٱ-ٱمكىٰٱَُ �ممْ فٱٌ ُ�ٱمل ُٰى�َمٱىٰهفمٰ وٰم ٣أ-سىأ/٬ُىلم ىمَٰنْفكم. شوم ٱ�نْفكم وٍُِْهٌُُ” نُ وٰم نىٱٌٍ �فٱ ىٱَمِكمٰل �ىف خفٍُٱْ”ً ىمَٰنْممْكَم ىُِٰكف ٌىٍكٱُْك”ُِ، فىٍُٰك نكُْم ىٍكٱُْك”ُِ (ءئح)، فلَ سإح. شوم ك”ْٱفٰىٌٌمَ �ّفىٌ”ٰ نُ وٰم نىٱٌٍ �فٱ لممٰىٍْمَل وٰ�ُْهو ظ-فْ” لىننفْكىٰ َُ(ظزؤ).

Book Design and Implementation of a 200mm 3C SiC CVD Reactor

Download or read book Design and Implementation of a 200mm 3C SiC CVD Reactor written by Christopher L. Frewin and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: Silicon carbide, SiC, is a semiconductor material which has many diverse uses in many of today's leading technologies. The wide band-gap aspect of the material has been utilized to create power and high frequency electronics, its physical hardness enables its use for MEMS devices, and the biological compatibility make perfect for utilization in medical applications. SiC is not a chemical compound normally found in nature and must be artificially generated. One of the methods used for the creation of single crystal, high quality SiC material is provided through the use of a chemical vapor deposition reactor. The University of South Florida currently has a horizontal hot-wallLPCVD reactor used by Dr. S.E. Saddow and his group to grow epitaxial SiC material for research grants by ONR and ARL. These agencies have commissioned the construction of a second LPCVD reactor for the primary purpose of growing 3C-SiC, a specific SiC crystal polytype, and this work describes the fabrication of the new reactor, MF2. This reactor was designed using the first reactor, MF1, as a template, but the design was modified to better facilitate single crystalline growth. The environment of the reactor is a very important consideration for crystal growth, and slight variations can cause critical defect incorporation into the crystal lattice. Many conditioning runs were required to facilitate the epitaxial growth of the different polytypes of SiC, and constant switching of the primary hot-zone required for the growth of hexagonal 4H-SiC and 6H-SiC to the hot zone required for 3C-SiC consumed precious resources and time. The new reactor uses a single primary control to monitor the three most important environmental concerns; hot-zone temperature, gaseous flow, and chamber pressure. The new reactor has been designed to use 100 mm Si substrates instead of the 50mm Si substrate size currently in use by MF1. The construction, testing, and 3C-SiC epitaxial growth on Si substrate capability of a 200 mm 3C-SiC hot-wall LPCVD reactor are demonstrated through this work.

Book CVD growth of SiC for high power and high frequency applications

Download or read book CVD growth of SiC for high power and high frequency applications written by Robin Karhu and published by Linköping University Electronic Press. This book was released on 2019-02-14 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Carbide (SiC) is a wide bandgap semiconductor that has attracted a lot of interest for electronic applications due to its high thermal conductivity, high saturation electron drift velocity and high critical electric field strength. In recent years commercial SiC devices have started to make their way into high and medium voltage applications. Despite the advancements in SiC growth over the years, several issues remain. One of these issues is that the bulk grown SiC wafers are not suitable for electronic applications due to the high background doping and high density of basal plane dislocations (BPD). Due to these problems SiC for electronic devices must be grown by homoepitaxy. The epitaxial growth is performed in chemical vapor deposition (CVD) reactors. In this work, growth has been performed in a horizontal hot-wall CVD (HWCVD) reactor. In these reactors it is possible to produce high-quality SiC epitaxial layers within a wide range of doping, both n- and p-type. SiC is a well-known example of polytypism, where the different polytypes exist as different stacking sequences of the Si-C bilayers. Polytypism makes polytype stability a problem during growth of SiC. To maintain polytype stability during homoepitaxy of the hexagonal polytypes the substrates are usually cut so that the angle between the surface normal and the c-axis is a few degrees, typically 4 or 8°. The off-cut creates a high density of micro-steps at the surface. These steps allow for the replication of the substrates polytype into the growing epitaxial layer, the growth will take place in a step-flow manner. However, there are some drawbacks with step-flow growth. One is that BPDs can replicate from the substrate into the epitaxial layer. Another problem is that 4H-SiC is often used as a substrate for growth of GaN epitaxial layers. The epitaxial growth of GaN has been developed on on-axis substrates (surface normal coincides with c-axis), so epitaxial 4H-SiC layers grown on off-axis substrates cannot be used as substrates for GaN epitaxial growth. In efforts to solve the problems with off-axis homoepitaxy of 4H-SiC, on-axis homoepitaxy has been developed. In this work, further development of wafer-scale on-axis homoepitaxy has been made. This development has been made on a Si-face of 4H-SiC substrates. The advances include highly resistive epilayers grown on on-axis substrates. In this thesis the ability to control the surface morphology of epitaxial layers grown on on-axis homoepitaxy is demonstrated. This work also includes growth of isotopically enriched 4H-SiC on on-axis substrates, this has been done to increase the thermal conductivity of the grown epitaxial layers. In (paper 1) on-axis homoepitaxy of 4H-SiC has been developed on 100 mm diameter substrates. This paper also contains comparisons between different precursors. In (paper 2) we have further developed on-axis homoepitaxy on 100 mm diameter wafers, by doping the epitaxial layers with vanadium. The vanadium doping of the epitaxial layers makes the layers highly resistive and thus suitable to use as a substrate for III-nitride growth. In (paper 3) we developed a method to control the surface morphology and reduce the as-grown surface roughness in samples grown on on-axis substrates. In (paper 4) we have increased the thermal conductivity of 4H-SiC epitaxial layers by growing the layers using isotopically enriched precursors. In (paper 5) we have investigated the role chlorine have in homoepitaxial growth of 4H-SiC. In (paper 6) we have investigated the charge carrier lifetime in as-grown samples and traced variations in lifetime to structural defects in the substrate. In (paper 7) we have investigated the formation mechanism of a morphological defect in homoepitaxial grown 4H-SiC.

Book High Growth Rate SiC CVD Via Hot wall Epitaxy

Download or read book High Growth Rate SiC CVD Via Hot wall Epitaxy written by Rachael L. Myers-Ward and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: This dissertation research focused on the growth of 4H-SiC epitaxial layers in low-pressure horizontal hot-wall chemical vapor deposition (CVD) reactors. The goal of the research was to develop a growth process that maximized the growth rate and produced films of smooth morphology. The epitaxial growth of SiC was carried out in two different reactor sizes, a 75 mm reactor and a 200 mm reactor. The maximum repeatable growth rate achieved was 30-32 um/h in the 200 mm reactor using the standard chemistry of hydrogen-propane-silane (H2-C3H8-SiH4) at growth temperatures

Book Silicon Carbide Biotechnology

Download or read book Silicon Carbide Biotechnology written by Stephen E. Saddow and published by Elsevier. This book was released on 2011-11-28 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors. The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time. For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo. This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions. Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices

Book Springer Handbook of Crystal Growth

Download or read book Springer Handbook of Crystal Growth written by Govindhan Dhanaraj and published by Springer Science & Business Media. This book was released on 2010-10-20 with total page 1823 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the years, many successful attempts have been chapters in this part describe the well-known processes made to describe the art and science of crystal growth, such as Czochralski, Kyropoulos, Bridgman, and o- and many review articles, monographs, symposium v- ing zone, and focus speci cally on recent advances in umes, and handbooks have been published to present improving these methodologies such as application of comprehensive reviews of the advances made in this magnetic elds, orientation of the growth axis, intro- eld. These publications are testament to the grow- duction of a pedestal, and shaped growth. They also ing interest in both bulk and thin- lm crystals because cover a wide range of materials from silicon and III–V of their electronic, optical, mechanical, microstructural, compounds to oxides and uorides. and other properties, and their diverse scienti c and The third part, Part C of the book, focuses on - technological applications. Indeed, most modern ad- lution growth. The various aspects of hydrothermal vances in semiconductor and optical devices would growth are discussed in two chapters, while three other not have been possible without the development of chapters present an overview of the nonlinear and laser many elemental, binary, ternary, and other compound crystals, KTP and KDP. The knowledge on the effect of crystals of varying properties and large sizes. The gravity on solution growth is presented through a c- literature devoted to basic understanding of growth parison of growth on Earth versus in a microgravity mechanisms, defect formation, and growth processes environment.

Book Fundamentals of Silicon Carbide Technology

Download or read book Fundamentals of Silicon Carbide Technology written by Tsunenobu Kimoto and published by John Wiley & Sons. This book was released on 2014-11-24 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.

Book Gallium Nitride and Silicon Carbide Power Technologies

Download or read book Gallium Nitride and Silicon Carbide Power Technologies written by K. Shenai and published by The Electrochemical Society. This book was released on 2011 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Carbide Technology for Advanced Human Healthcare Applications

Download or read book Silicon Carbide Technology for Advanced Human Healthcare Applications written by Stephen E. Saddow and published by Elsevier. This book was released on 2022-07-13 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: After over two decades of focused research and development, silicon carbide (SiC) is now ready for use in the healthcare sector and Silicon Carbide Technology for Advanced Human Healthcare Applications provides an up-to-date assessment of SiC devices for long-term human use. It explores a plethora of applications that SiC is uniquely positioned for in human healthcare, beginning with the three primary areas of technology which are closest to human trials and thus adoption in the healthcare industry: neural implants and spinal cord repair, graphene and biosensors, and finally deep tissue cancer therapy using SiC nanotechnology. Biomedical-inspired engineers, scientists, and healthcare professionals will find this book to be very useful in two ways: (I) as a guide to new ways to design and develop advanced medical devices and (II) as a reference for new developments in the field. The book's intent is to stimulate ideas for further technological enhancements and breakthroughs, which will provide alternative solutions for human healthcare applications. - Discusses the utilization of SiC materials for biomedical applications - Provides a logical pathway to understand why SiC is ideal for several critical applications, in particular for long-term implantable devices, and will serve as a guide to new ways to design and develop advanced medical devices - Serves as a reference for new developments in the field and as a technology resource for medical doctors and practitioners looking to identify and implement advanced engineering solutions to everyday medical challenges that currently lack long-term, cost-effective solutions

Book Materials for Electronics  Silicon Carbide and Related Materials

Download or read book Materials for Electronics Silicon Carbide and Related Materials written by Min Lu and published by Trans Tech Publications Ltd. This book was released on 2020-11-16 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selected peer-reviewed full text papers from the Asia-Pacific Conference on Silicon Carbide and Related Materials (APCSCRM 2019) Selected peer-reviewed papers from the Asia-Pacific Conference on Silicon Carbide and Related Materials (APCSCRM 2019), July 17-20, 2019, Beijing, China

Book SiC Materials and Devices

Download or read book SiC Materials and Devices written by and published by Academic Press. This book was released on 1998-07-02 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume addresses the subject of materials science, specifically the materials aspects, device applications, and fabricating technology of SiC.

Book Advanced Silicon Carbide Devices and Processing

Download or read book Advanced Silicon Carbide Devices and Processing written by Stephen Saddow and published by BoD – Books on Demand. This book was released on 2015-09-17 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the production of the first commercially available blue LED in the late 1980s, silicon carbide technology has grown into a billion-dollar industry world-wide in the area of solid-state lighting and power electronics. With this in mind we organized this book to bring to the attention of those well versed in SiC technology some new developments in the field with a particular emphasis on particularly promising technologies such as SiC-based solar cells and optoelectronics. We have balanced this with the more traditional subjects such as power electronics and some new developments in the improvement of the MOS system for SiC MOSFETS. Given the importance of advanced microsystems and sensors based on SiC, we also included a review on 3C-SiC for both microsystem and electronic applications.

Book Silicon Carbide Microsystems for Harsh Environments

Download or read book Silicon Carbide Microsystems for Harsh Environments written by Muthu Wijesundara and published by Springer Science & Business Media. This book was released on 2011-05-17 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods towards system level integration of components and key challenges are evaluated and discussed based on the current state of SiC materials processing and device technology. Issues such as temperature mismatch, process compatibility and temperature stability of individual components and how these issues manifest when building the system receive thorough investigation. The material covered not only reviews the state-of-the-art MEMS devices, provides a framework for the joining of electronics and MEMS along with packaging into usable harsh-environment-ready sensor modules.

Book Chemical Vapor Deposition of Silicon Carbide in a Hot Wall Reactor

Download or read book Chemical Vapor Deposition of Silicon Carbide in a Hot Wall Reactor written by Feng Gao and published by . This book was released on 1993 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CVD solutions for new directions in SiC and GaN epitaxy

Download or read book CVD solutions for new directions in SiC and GaN epitaxy written by Xun Li and published by Linköping University Electronic Press. This book was released on 2015-05-22 with total page 57 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis aims to develop a chemical vapor deposition (CVD) process for the new directions in both silicon carbon (SiC) and gallium nitride (GaN) epitaxial growth. The properties of the grown epitaxial layers are investigated in detail in order to have a deep understanding. SiC is a promising wide band gap semiconductor material which could be utilized for fabricating high-power and high-frequency devices. 3C-SiC is the only polytype with a cubic structure and has superior physical properties over other common SiC polytypes, such as high hole/electron mobility and low interface trap density with oxide. Due to lack of commercial native substrates, 3C-SiC is mainly grown on the cheap silicon (Si) substrates. However, there’s a large mismatch in both lattice constants and thermal expansion coefficients leading to a high density of defects in the epitaxial layers. In paper 1, the new CVD solution for growing high quality double-position-boundaries free 3C-SiC using on-axis 4H-SiC substrates is presented. Reproducible growth parameters, including temperature, C/Si ratio, ramp-up condition, Si/H2 ratio, N2 addition and pressure, are covered in this study. GaN is another attractive wide band gap semiconductor for power devices and optoelectronic applications. In the GaN-based transistors, carbon is often exploited to dope the buffer layer to be semi-insulating in order to isolate the device active region from the substrate. The conventional way is to use the carbon atoms on the gallium precursor and control the incorporation by tuning the process parameters, e.g. temperature, pressure. However, there’s a risk of obtaining bad morphology and thickness uniformity if the CVD process is not operated in an optimal condition. In addition, carbon source from the graphite insulation and improper coated graphite susceptor may also contribute to the doping in a CVD reactor, which is very difficult to be controlled in a reproducible way. Therefore, in paper 2, intentional carbon doping of (0001) GaN using six hydrocarbon precursors, i.e. methane (CH4), ethylene (C2H4), acetylene (C2H2), propane (C3H8), iso-butane (i-C4H10) and trimethylamine (N(CH3)3), have been explored. In paper 3, propane is chosen for carbon doping when growing the high electron mobility transistor (HEMT) structure on a quarter of 3-inch 4H-SiC wafer. The quality of epitaxial layer and fabricated devices is evaluated. In paper 4, the behaviour of carbon doping using carbon atoms from the gallium precursor, trimethylgallium (Ga(CH3)3), is explained by thermochemical and quantum chemical modelling and compared with the experimental results. GaN is commonly grown on foreign substrates, such as sapphire (Al2O3), Si and SiC, resulting in high stress and high threading dislocation densities. Hence, bulk GaN substrates are preferred for epitaxy. In paper 5, the morphological, structural and luminescence properties of GaN epitaxial layers grown on N-face free-standing GaN substrates are studied since the N-face GaN has advantageous characteristics compared to the Ga-face GaN. In paper 6, time-resolved photoluminescence (TRPL) technique is used to study the properties of AlGaN/GaN epitaxial layers grown on both Ga-face and N-face free-standing GaN substrates. A PL line located at ~3.41 eV is only emerged on the sample grown on the Ga-face substrate, which is suggested to associate with two-dimensional electron gas (2DEG) emission.

Book Wide Bandgap Semiconductors for Power Electronics

Download or read book Wide Bandgap Semiconductors for Power Electronics written by Peter Wellmann and published by John Wiley & Sons. This book was released on 2022-01-10 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Semiconductors for Power Electronic A guide to the field of wide bandgap semiconductor technology Wide Bandgap Semiconductors for Power Electronics is a comprehensive and authoritative guide to wide bandgap materials silicon carbide, gallium nitride, diamond and gallium(III) oxide. With contributions from an international panel of experts, the book offers detailed coverage of the growth of these materials, their characterization, and how they are used in a variety of power electronics devices such as transistors and diodes and in the areas of quantum information and hybrid electric vehicles. The book is filled with the most recent developments in the burgeoning field of wide bandgap semiconductor technology and includes information from cutting-edge semiconductor companies as well as material from leading universities and research institutions. By taking both scholarly and industrial perspectives, the book is designed to be a useful resource for scientists, academics, and corporate researchers and developers. This important book: Presents a review of wide bandgap materials and recent developments Links the high potential of wide bandgap semiconductors with the technological implementation capabilities Offers a unique combination of academic and industrial perspectives Meets the demand for a resource that addresses wide bandgap materials in a comprehensive manner Written for materials scientists, semiconductor physicists, electrical engineers, Wide Bandgap Semiconductors for Power Electronics provides a state of the art guide to the technology and application of SiC and related wide bandgap materials.