EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Groups St Andrews 2017 in Birmingham

Download or read book Groups St Andrews 2017 in Birmingham written by C. M. Campbell and published by Cambridge University Press. This book was released on 2019-04-11 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings of 'Groups St Andrews 2017' provide a snapshot of the state-of-the-art in contemporary group theory.

Book Galois Covers  Grothendieck Teichm  ller Theory and Dessins d Enfants

Download or read book Galois Covers Grothendieck Teichm ller Theory and Dessins d Enfants written by Frank Neumann and published by Springer Nature. This book was released on 2020-09-26 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmüller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.

Book Groups and Graphs  Designs and Dynamics

Download or read book Groups and Graphs Designs and Dynamics written by R. A. Bailey and published by Cambridge University Press. This book was released on 2024-05-30 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of four short courses looks at group representations, graph spectra, statistical optimality, and symbolic dynamics, highlighting their common roots in linear algebra. It leads students from the very beginnings in linear algebra to high-level applications: representations of finite groups, leading to probability models and harmonic analysis; eigenvalues of growing graphs from quantum probability techniques; statistical optimality of designs from Laplacian eigenvalues of graphs; and symbolic dynamics, applying matrix stability and K-theory. An invaluable resource for researchers and beginning Ph.D. students, this book includes copious exercises, notes, and references.

Book Algebraic Combinatorics and the Monster Group

Download or read book Algebraic Combinatorics and the Monster Group written by Alexander A. Ivanov and published by Cambridge University Press. This book was released on 2023-08-17 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering, arguably, one of the most attractive and mysterious mathematical objects, the Monster group, this text strives to provide an insightful introduction and the discusses the current state of the field. The Monster group is related to many areas of mathematics, as well as physics, from number theory to string theory. This book cuts through the complex nature of the field, highlighting some of the mysteries and intricate relationships involved. Containing many meaningful examples and a manual introduction to the computer package GAP, it provides the opportunity and resources for readers to start their own calculations. Some 20 experts here share their expertise spanning this exciting field, and the resulting volume is ideal for researchers and graduate students working in Combinatorial Algebra, Group theory and related areas.

Book Facets of Algebraic Geometry

Download or read book Facets of Algebraic Geometry written by Paolo Aluffi and published by Cambridge University Press. This book was released on 2022-04-07 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written to honor the enduring influence of William Fulton, these articles present substantial contributions to algebraic geometry.

Book Elliptic Regularity Theory by Approximation Methods

Download or read book Elliptic Regularity Theory by Approximation Methods written by Edgard A. Pimentel and published by Cambridge University Press. This book was released on 2022-06-30 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the basics of elliptic PDEs in connection with regularity theory, the book bridges fundamental breakthroughs – such as the Krylov–Safonov and Evans–Krylov results, Caffarelli's regularity theory, and the counterexamples due to Nadirashvili and Vlăduţ – and modern developments, including improved regularity for flat solutions and the partial regularity result. After presenting this general panorama, accounting for the subtleties surrounding C-viscosity and Lp-viscosity solutions, the book examines important models through approximation methods. The analysis continues with the asymptotic approach, based on the recession operator. After that, approximation techniques produce a regularity theory for the Isaacs equation, in Sobolev and Hölder spaces. Although the Isaacs operator lacks convexity, approximation methods are capable of producing Hölder continuity for the Hessian of the solutions by connecting the problem with a Bellman equation. To complete the book, degenerate models are studied and their optimal regularity is described.

Book Facets of Algebraic Geometry  Volume 2

Download or read book Facets of Algebraic Geometry Volume 2 written by Paolo Aluffi and published by Cambridge University Press. This book was released on 2022-04-07 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written to honor the 80th birthday of William Fulton, the articles collected in this volume (the second of a pair) present substantial contributions to algebraic geometry and related fields, with an emphasis on combinatorial algebraic geometry and intersection theory. Featured include commutative algebra, moduli spaces, quantum cohomology, representation theory, Schubert calculus, and toric and tropical geometry. The range of these contributions is a testament to the breadth and depth of Fulton's mathematical influence. The authors are all internationally recognized experts, and include well-established researchers as well as rising stars of a new generation of mathematicians. The text aims to stimulate progress and provide inspiration to graduate students and researchers in the field.

Book Stacks Project Expository Collection

Download or read book Stacks Project Expository Collection written by Pieter Belmans and published by Cambridge University Press. This book was released on 2022-09-30 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.

Book Equivariant Topology and Derived Algebra

Download or read book Equivariant Topology and Derived Algebra written by Scott Balchin and published by Cambridge University Press. This book was released on 2021-11-18 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of research papers, both new and expository, based on the interests of Professor J. P. C. Greenlees.

Book Bounded Cohomology and Simplicial Volume

Download or read book Bounded Cohomology and Simplicial Volume written by Caterina Campagnolo and published by Cambridge University Press. This book was released on 2022-11-17 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction by Gromov in the 1980s, the study of bounded cohomology and simplicial volume has developed into an active field connected to geometry and group theory. This monograph, arising from a learning seminar for young researchers working in the area, provides a collection of different perspectives on the subject, both classical and recent. The book's introduction presents the main definitions of the theories of bounded cohomology and simplicial volume, outlines their history, and explains their principal motivations and applications. Individual chapters then present different aspects of the theory, with a focus on examples. Detailed references to foundational papers and the latest research are given for readers wishing to dig deeper. The prerequisites are only basic knowledge of classical algebraic topology and of group theory, and the presentations are gentle and informal in order to be accessible to beginning graduate students wanting to enter this lively and topical field.

Book Recent Developments in Algebraic Geometry

Download or read book Recent Developments in Algebraic Geometry written by Hamid Abban and published by Cambridge University Press. This book was released on 2022-09-30 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in celebration of Miles Reid's 70th birthday, this illuminating volume contains 11 papers by leading mathematicians in and around algebraic geometry, broadly related to the themes and interests of Reid's varied career. Just as in Reid's own scientific output, some of the papers give comprehensive accounts of the state of the art of foundational matters, while others give expositions of subject areas or techniques in concrete terms. Reid has been one of the major expositors of algebraic geometry and a great influence on many in this field – this book hopes to inspire a new generation of graduate students and researchers in his tradition.

Book The Strong Sylow Theorem for the Prime p in Simple Locally Finite Groups

Download or read book The Strong Sylow Theorem for the Prime p in Simple Locally Finite Groups written by Dipl.-Math. Felix F. Flemisch and published by BoD – Books on Demand. This book was released on 2024-09-11 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research paper continues [15]. We begin with giving a profound overview of the structure of arbitrary simple groups and in particular of the simple locally finite groups and reduce their Sylow theory for the prime p to a quite famous conjecture by Prof. Otto H. Kegel (see [38], Theorem 2.4) "Let the p-subgroup P be a p-uniqueness subgroup in the finite simple group S which belongs to one of the seven rank-unbounded families. Then the rank of S is bounded in terms of P.") about the rank-unbounded ones of the 19 known families of finite simple groups. We introduce a new scheme to describe the 19 families, the family T of types, define the rank of each type, and emphasise the rôle of Kegel covers. This part presents a unified rather complete picture of known results all of whose proofs are by reference. Subsequently we apply new ideas to prove the conjecture for the Alternating Groups. Thereupon we are remembering Kegel covers and -sequences. Next we suggest future research by stating a way 1) and a way 2) how to prove and even how to optimise Kegel's conjecture step-by-step or peu à peu which leads to Conjecture 1, Conjecture 2 and Conjecture 3 thereby unifying Sylow theory in locally finite simple groups with Sylow theory in locally finite and p-soluble groups whose joint study directs very reliably Sylow theory in (locally) finite groups. For any unexplained terminology we refer to [15]. We then continue the program begun above to optimise along the way 1) the theorem about the first type = An of infinite families of finite simple groups step-by-step to further types by proving it for the second type = A = PSL n . We start with applying new ideas to prove Conjecture 2 about the General Linear Groups over (commutative) locally finite fields, stating that their rank is bounded in terms of their p-uniqueness, and break down this basic insight to the Special Linear Groups and the Projective Special Linear (PSL) Groups over locally finite fields. We close with suggestions for future research regarding the remaining rank-unbounded types (the beautiful "Classical Groups") and the way 2), regarding (locally) finite and p-soluble groups, and regarding our new perceptions of the very pioneering contributions by Cauchy and by Galois to Sylow theory in finite groups. We hope to enthuse group theorists with these suggestions and are ready to coördinate related research work. We include the predecessor research paper [15] as an Appendix.

Book Topics in Infinite Group Theory

Download or read book Topics in Infinite Group Theory written by Benjamin Fine and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-08-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an advanced overview of several topics in infinite group theory. It can also be considered as a rigorous introduction to combinatorial and geometric group theory. The philosophy of the book is to describe the interaction between these two important parts of infinite group theory. In this line of thought, several theorems are proved multiple times with different methods either purely combinatorial or purely geometric while others are shown by a combination of arguments from both perspectives. The first part of the book deals with Nielsen methods and introduces the reader to results and examples that are helpful to understand the following parts. The second part focuses on covering spaces and fundamental groups, including covering space proofs of group theoretic results. The third part deals with the theory of hyperbolic groups. The subjects are illustrated and described by prominent examples and an outlook on solved and unsolved problems.

Book Finitely Presented Groups

Download or read book Finitely Presented Groups written by Volker Diekert and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-10-07 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains surveys and research articles on the state-of-the-art in finitely presented groups for researchers and graduate students. Overviews of current trends in exponential groups and of the classification of finite triangle groups and finite generalized tetrahedron groups are complemented by new results on a conjecture of Rosenberger and an approximation theorem. A special emphasis is on algorithmic techniques and their complexity, both for finitely generated groups and for finite Z-algebras, including explicit computer calculations highlighting important classical methods. A further chapter surveys connections to mathematical logic, in particular to universal theories of various classes of groups, and contains new results on countable elementary free groups. Applications to cryptography include overviews of techniques based on representations of p-groups and of non-commutative group actions. Further applications of finitely generated groups to topology and artificial intelligence complete the volume. All in all, leading experts provide up-to-date overviews and current trends in combinatorial group theory and its connections to cryptography and other areas.

Book Infinite Group Actions on Polyhedra

Download or read book Infinite Group Actions on Polyhedra written by MICHAEL W. DAVIS and published by Springer Nature. This book was released on 2024 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past fifteen years, the theory of right-angled Artin groups and special cube complexes has emerged as a central topic in geometric group theory. This monograph provides an account of this theory, along with other modern techniques in geometric group theory. Structured around the theme of group actions on contractible polyhedra, this book explores two prominent methods for constructing such actions: utilizing the group of deck transformations of the universal cover of a nonpositively curved polyhedron and leveraging the theory of simple complexes of groups. The book presents various approaches to obtaining cubical examples through CAT(0) cube complexes, including the polyhedral product construction, hyperbolization procedures, and the Sageev construction. Moreover, it offers a unified presentation of important non-cubical examples, such as Coxeter groups, Artin groups, and groups that act on buildings. Designed as a resource for graduate students and researchers specializing in geometric group theory, this book should also be of high interest to mathematicians in related areas, such as 3-manifolds.

Book Surveys in Combinatorics 2024

Download or read book Surveys in Combinatorics 2024 written by Felix Fischer and published by Cambridge University Press. This book was released on 2024-06-13 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains surveys of current research directions in combinatorics written by leading researchers in their fields.

Book C    Algebraic Geometry with Corners

Download or read book C Algebraic Geometry with Corners written by Kelli Francis-Staite and published by Cambridge University Press. This book was released on 2023-12-31 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Schemes in algebraic geometry can have singular points, whereas differential geometers typically focus on manifolds which are nonsingular. However, there is a class of schemes, 'C∞-schemes', which allow differential geometers to study a huge range of singular spaces, including 'infinitesimals' and infinite-dimensional spaces. These are applied in synthetic differential geometry, and derived differential geometry, the study of 'derived manifolds'. Differential geometers also study manifolds with corners. The cube is a 3-dimensional manifold with corners, with boundary the six square faces. This book introduces 'C∞-schemes with corners', singular spaces in differential geometry with good notions of boundary and corners. They can be used to define 'derived manifolds with corners' and 'derived orbifolds with corners'. These have applications to major areas of symplectic geometry involving moduli spaces of J-holomorphic curves. This work will be a welcome source of information and inspiration for graduate students and researchers working in differential or algebraic geometry.