Download or read book Grobner Bases in Ring Theory written by Huishi Li and published by World Scientific. This book was released on 2012 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Preliminaries. 1.1. Presenting algebras by relations. 1.2. S-graded algebras and modules. 1.3. [symbol]-filtered algebras and modules -- 2. The [symbol]-leading homogeneous algebra A[symbol]. 2.1. Recognizing A via G[symbol](A): part 1. 2.2. Recognizing A via G[symbol](A): part 2. 2.3. The [symbol-graded isomorphism A[symbol](A). 2.4. Recognizing A via A[symbol] -- 3. Grobner bases: conception and construction. 3.1. Monomial ordering and admissible system. 3.2. Division algorithm and Grobner basis. 3.3. Grobner bases and normal elements. 3.4. Grobner bases w.r.t. skew multiplicative K-bases. 3.5. Grobner bases in K[symbol] and KQ. 3.6. (De)homogenized Grobner bases. 3.7. dh-closed homogeneous Grobner bases -- 4. Grobner basis theory meets PBW theory. 4.1. [symbol]-standard basis [symbol]-PBW isomorphism. 4.2. Realizing [symbol]-PBW isomorphism by Grobner basis. 4.3. Classical PBW K-bases vs Grobner bases. 4.4. Solvable polynomial algebras revisited -- 5. Using A[symbol] in terms of Grobner bases. 5.1. The working strategy. 5.2. Ufnarovski graph. 5.3. Determination of Gelfand-Kirillov Dimension. 5.4. Recognizing Noetherianity. 5.5. Recognizing (semi- )primeness and PI-property. 5.6. Anick's resolution over monomial algebras. 5.7. Recognizing finiteness of global dimension. 5.8. Determination of Hilbert series -- 6. Recognizing (non- )homogeneous p-Koszulity via A[symbol]. 6.1. (Non- )homogeneous p-Koszul algebras. 6.2. Anick's resolution and homogeneous p-Koszulity. 6.3. Working in terms of Grobner bases -- 7. A study of Rees algebra by Grobner bases. 7.1. Defining [symbol] by [symbol]. 7.2. Defining [symbol] by [symbol]. 7.3. Recognizing structural properties of [symbol] via [symbol]. 7.4. An application to regular central extensions. 7.5. Algebras defined by dh-closed homogeneous Grobner bases -- 8. Looking for more Grobner bases. 8.1. Lifting (finite) Grobner bases from O[symbol]. 8.2. Lifting (finite) Grobner bases from a class of algebras. 8.3. New examples of Grobner basis theory. 8.4. Skew 2-nomial algebras. 8.5. Almost skew 2-nomial algebras
Download or read book Gr bner Bases and Applications written by Bruno Buchberger and published by Cambridge University Press. This book was released on 1998-02-26 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive account of theory and applications of Gröbner bases, co-edited by the subject's inventor.
Download or read book Harmony of Gr bner Bases and the Modern Industrial Society written by Takayuki Hibi and published by World Scientific. This book was released on 2012 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of research papers and expository survey articles presented by the invited speakers of the conference on OC Harmony of GrAbner Bases and the Modern Industrial SocietyOCO. Topics include computational commutative algebra, algebraic statistics, algorithms of D-modules and combinatorics. This volume also provides current trends on GrAbner bases and will stimulate further development of many research areas surrounding GrAbner bases."
Download or read book Gr bner Bases Coding and Cryptography written by Massimiliano Sala and published by Springer Science & Business Media. This book was released on 2009-05-28 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coding theory and cryptography allow secure and reliable data transmission, which is at the heart of modern communication. Nowadays, it is hard to find an electronic device without some code inside. Gröbner bases have emerged as the main tool in computational algebra, permitting numerous applications, both in theoretical contexts and in practical situations. This book is the first book ever giving a comprehensive overview on the application of commutative algebra to coding theory and cryptography. For example, all important properties of algebraic/geometric coding systems (including encoding, construction, decoding, list decoding) are individually analysed, reporting all significant approaches appeared in the literature. Also, stream ciphers, PK cryptography, symmetric cryptography and Polly Cracker systems deserve each a separate chapter, where all the relevant literature is reported and compared. While many short notes hint at new exciting directions, the reader will find that all chapters fit nicely within a unified notation.
Download or read book Grobner Bases in Commutative Algebra written by Viviana Ene and published by American Mathematical Soc.. This book was released on 2011-12-01 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise yet comprehensive and self-contained introduction to Grobner basis theory and its applications to various current research topics in commutative algebra. It especially aims to help young researchers become acquainted with fundamental tools and techniques related to Grobner bases which are used in commutative algebra and to arouse their interest in exploring further topics such as toric rings, Koszul and Rees algebras, determinantal ideal theory, binomial edge ideals, and their applications to statistics. The book can be used for graduate courses and self-study. More than 100 problems will help the readers to better understand the main theoretical results and will inspire them to further investigate the topics studied in this book.
Download or read book An Introduction to Grobner Bases written by William W. Adams and Philippe Loustaunau and published by American Mathematical Soc.. This book was released on 1994-07-21 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: A very carefully crafted introduction to the theory and some of the applications of Grobner bases ... contains a wealth of illustrative examples and a wide variety of useful exercises, the discussion is everywhere well-motivated, and further developments and important issues are well sign-posted ... has many solid virtues and is an ideal text for beginners in the subject ... certainly an excellent text. --Bulletin of the London Mathematical Society As the primary tool for doing explicit computations in polynomial rings in many variables, Grobner bases are an important component of all computer algebra systems. They are also important in computational commutative algebra and algebraic geometry. This book provides a leisurely and fairly comprehensive introduction to Grobner bases and their applications. Adams and Loustaunau cover the following topics: the theory and construction of Grobner bases for polynomials with coefficients in a field, applications of Grobner bases to computational problems involving rings of polynomials in many variables, a method for computing syzygy modules and Grobner bases in modules, and the theory of Grobner bases for polynomials with coefficients in rings. With over 120 worked-out examples and 200 exercises, this book is aimed at advanced undergraduate and graduate students. It would be suitable as a supplement to a course in commutative algebra or as a textbook for a course in computer algebra or computational commutative algebra. This book would also be appropriate for students of computer science and engineering who have some acquaintance with modern algebra.
Download or read book Grobner Bases and Convex Polytopes written by Bernd Sturmfels and published by American Mathematical Soc.. This book was released on 1996 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the interplay of computational commutative algebra and the theory of convex polytopes. It centres around a special class of ideals in a polynomial ring: the class of toric ideals. They are characterized as those prime ideals that are generated by monomial differences or as the defining ideals of toric varieties (not necessarily normal). The interdisciplinary nature of the study of Gröbner bases is reflected by the specific applications appearing in this book. These applications lie in the domains of integer programming and computational statistics. The mathematical tools presented in the volume are drawn from commutative algebra, combinatorics, and polyhedral geometry.
Download or read book Gr bner Bases and the Computation of Group Cohomology written by David J. Green and published by Springer Science & Business Media. This book was released on 2003-11-18 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph develops the Gröbner basis methods needed to perform efficient state of the art calculations in the cohomology of finite groups. Results obtained include the first counterexample to the conjecture that the ideal of essential classes squares to zero. The context is J. F. Carlson’s minimal resolutions approach to cohomology computations.
Download or read book Gr bner Bases in Ring Theory written by Huishi Li and published by World Scientific. This book was released on 2012 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph strives to introduce a solid foundation on the usage of Grbner bases in ring theory by focusing on noncommutative associative algebras defined by relations over a field K. It also reveals the intrinsic structural properties of Grbner bases, presents a constructive PBW theory in a quite extensive context and, along the routes built via the PBW theory, the book demonstrates novel methods of using Grbner bases in determining and recognizing many more structural properties of algebras, such as the Gelfand?Kirillov dimension, Noetherianity, (semi-)primeness, PI-property, finiteness of global homological dimension, Hilbert series, (non-)homogeneous p-Koszulity, PBW-deformation, and regular central extension.With a self-contained and constructive Grbner basis theory for algebras with a skew multiplicative K-basis, numerous illuminating examples are constructed in the book for illustrating and extending the topics studied. Moreover, perspectives of further study on the topics are prompted at appropriate points. This book can be of considerable interest to researchers and graduate students in computational (computer) algebra, computational (noncommutative) algebraic geometry; especially for those working on the structure theory of rings, algebras and their modules (representations).
Download or read book Polytopes Rings and K Theory written by Winfried Bruns and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines interactions of polyhedral discrete geometry and algebra. What makes this book unique is the presentation of several central results in all three areas of the exposition - from discrete geometry, to commutative algebra, and K-theory.
Download or read book Concrete Abstract Algebra written by Niels Lauritzen and published by Cambridge University Press. This book was released on 2003-10-16 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents abstract algebra based on concrete examples and applications. All the traditional material with exciting directions.
Download or read book Multidimensional Systems written by Nirmal K. Bose and published by Institute of Electrical & Electronics Engineers(IEEE). This book was released on 1979 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Ring and Module Theory written by Toma Albu and published by Springer Science & Business Media. This book was released on 2011-02-04 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.
Download or read book Using Algebraic Geometry written by David A. Cox and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.
Download or read book Computational Commutative Algebra 1 written by Martin Kreuzer and published by Springer Science & Business Media. This book was released on 2008-07-15 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to polynomial rings, Gröbner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.
Download or read book Computational Invariant Theory written by Harm Derksen and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups", provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.
Download or read book Introduction to Modern Algebra and Its Applications written by Nadiya Gubareni and published by CRC Press. This book was released on 2021-06-23 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to modern abstract algebra and its applications. It covers all major topics of classical theory of numbers, groups, rings, fields and finite dimensional algebras. The book also provides interesting and important modern applications in such subjects as Cryptography, Coding Theory, Computer Science and Physics. In particular, it considers algorithm RSA, secret sharing algorithms, Diffie-Hellman Scheme and ElGamal cryptosystem based on discrete logarithm problem. It also presents Buchberger’s algorithm which is one of the important algorithms for constructing Gröbner basis. Key Features: Covers all major topics of classical theory of modern abstract algebra such as groups, rings and fields and their applications. In addition it provides the introduction to the number theory, theory of finite fields, finite dimensional algebras and their applications. Provides interesting and important modern applications in such subjects as Cryptography, Coding Theory, Computer Science and Physics. Presents numerous examples illustrating the theory and applications. It is also filled with a number of exercises of various difficulty. Describes in detail the construction of the Cayley-Dickson construction for finite dimensional algebras, in particular, algebras of quaternions and octonions and gives their applications in the number theory and computer graphics.