EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Greater Sage grouse Seasonal Ecology and Responses to Habitat Manipulations in Northern Utah

Download or read book Greater Sage grouse Seasonal Ecology and Responses to Habitat Manipulations in Northern Utah written by Eric T. Thacker and published by . This book was released on 2010 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Declining greater sage-grouse populations (Centrocercus urophasianus; hereafter sage-grouse) have led to increased concern regarding the long-term stability of the species. Previous research has identified factors contributing to the observed population declines. Habitat degradation and loss have been implicated as major factors in population declines. Although much is known about sage-grouse biology, more information is needed about population responses to specific management actions. This research was conducted to document sage-grouse responses to site-specific management actions. Additionally, I evaluated sage-grouse temporal and seasonal habitat-use and the comparability of techniques used by range and wildlife managers to measure vegetation responses of habitat management. Specifically, I evaluated 1) whether chemical analysis (gas chromatography) of sage-grouse fecal pellets could identify sagebrush species in sage-grouse winter diets, 2) the comparability of the line-point intercept and Daubenmire canopy cover methods for estimating canopy cover, 3) the response of sage-grouse broods to prescribed burns in a high elevation sagebrush community in northeastern Utah, and 4) the vegetation and insect characteristics of sites used by sage-grouse broods during a 24-hour period. I was able to determine wintering sage-grouse diets using gas chromatography by analyzing fecal pellets. This research also confirmed that black sagebrush (Artemisia nova) was an important component of sage-grouse winter diets in western Box Elder County and Parker Mountain populations. The line-point intercept and Daubenmire methods for estimating canopy cover are not comparable. Sage-grouse broods selected small (~25 ha) patchy prescribed burns in high elevation mountain big sagebrush (A. tridentata vaseyana) communities in northeastern Utah. Sage-grouse brood-site use in northwestern Utah did not differ during the diurnal hours, but nocturnal roost sites were characterized by shorter statured shrubs and more bare ground when compared to midday sites.

Book Greater Sage Grouse

    Book Details:
  • Author : Steve Knick
  • Publisher : Univ of California Press
  • Release : 2011-05-19
  • ISBN : 0520948688
  • Pages : 665 pages

Download or read book Greater Sage Grouse written by Steve Knick and published by Univ of California Press. This book was released on 2011-05-19 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: Admired for its elaborate breeding displays and treasured as a game bird, the Greater Sage-Grouse is a charismatic symbol of the broad open spaces in western North America. Unfortunately these birds have declined across much of their range—which stretches across 11 western states and reaches into Canada—mostly due to loss of critical sagebrush habitat. Today the Greater Sage-Grouse is at the center of a complex conservation challenge. This multifaceted volume, an important foundation for developing conservation strategies and actions, provides a comprehensive synthesis of scientific information on the biology and ecology of the Greater Sage-Grouse. Bringing together the experience of thirty-eight researchers, it describes the bird’s population trends, its sagebrush habitat, and potential limitations to conservation, including the effects of rangeland fire, climate change, invasive plants, disease, and land uses such as energy development, grazing, and agriculture.

Book Ecology and Seasonal Habitat Use Patterns of Columbian Sharp tailed Grouse in Northern Utah

Download or read book Ecology and Seasonal Habitat Use Patterns of Columbian Sharp tailed Grouse in Northern Utah written by Ron D. Greer and published by . This book was released on 2010 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: Columbian sharp-tailed grouse (Tympanuchus phasianellus columbianus: hereafter sharp-tailed grouse) populations have been declining. These declines have been attributed to a number of factors, including habitat loss due to agriculture, habitat fragmentation, overgrazing by livestock, and the loss to fire. To gather information about their status in northern Utah, I radio-marked sharp-tailed grouse in 2003 (n=15) and 2004 (n=20) in two research areas. The study areas were located on the south end of Cache County and in eastern Box Elder County. In the Cache study area, I monitored 7 males and 1 female in 2003, and 6 males and 3 females in 2004. In the Box Elder study area, I monitored 6 males in 2003 and 6 males and 5 females in 2004. I then located the radio-marked sharp-tailed grouse using telemetry and collected Visual Obstruction Readings (VOR) and vegetation data on each flush site and on a randomly selected paired point. I completed an unsupervised classification of the two study areas to determine if habitats were used more than would be expected based on availability. I then used a paired point linear regression to determine if vegetation parameters were correlated with sharp-tailed grouse on the landscape. Sagebrush in the Box Elder County study area and forbs in the Cache County study area were significantly correlated with habitat use by sharp-tailed grouse. The VOR readings were higher at the flush sites than at the paired points. The unsupervised classification showed that in Box Elder County, sagebrush was used in greater proportion than is available, while in the Cache County study area there were no habitat types that were used in greater proportion than was available on the landscape. I collected information on nest sites, nest success, broods, and mortality of these 2 populations. Nest success was 75% combined over the 2-year study, and mortality was 72% for both populations over the 2 years. Seasonal habitat use and distance traveled were determined using Global Positioning System points collected at every flush point. The distance traveled ranged from 0.9 km to 14.7 km, with the longest distance being traveled in the winter.

Book Greater Sage grouse Seasonal Habitat Models  Response to Juniper Reduction and Effects of Capture Behavior on Vital Rates  in Northwest Utah

Download or read book Greater Sage grouse Seasonal Habitat Models Response to Juniper Reduction and Effects of Capture Behavior on Vital Rates in Northwest Utah written by Avery Cook and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The greater sage-grouse (Centrocercus urophasianus; sage-grouse) is a species of conservation concern in Utah and range-wide due to declines in populations and threats to sagebrush habitat on which they depend. To effectively conserve the species, detailed site-specific knowledge of ecology and distribution is needed. To expand knowledge of local populations within the West Box Elder Sage Grouse Management Area (SGMA) and gain insights into the effectiveness of vegetation treatments intended to benefit sagegrouse, I radio marked and tracked 123 (68 female, 55 male) sage-grouse and conducted sage-grouse pellet surveys on 19 conifer removal projects. Widespread habitat restoration measures designed to benefit sage-grouse have highlighted the need for prioritization tools to optimize placement of sage-grouse habitat projects. I generated seasonal habitat models to predict sage-grouse habitat use within the West Box Elder SGMA using a suite of vegetation and topographical predictors and known sage-grouse locations. Model fit was good with brood, early summer, late summer, lekking (early spring), and non-breeding models reporting an AUC of >0.90; nest and winter models reported an AUC of 0.87 and 0.85, respectively. A vegetation disturbance history was built for the study area from 1985 to 2013; however, the vegetation disturbances mapped were not a strong predictor of sage-grouse seasonal habitat-use. To evaluate effectiveness of conifer reduction treatments I used fecal pellet and in concert with radio-telemetry data. Increased sage-grouse use of conifer treatments was positively associated with sage-grouse presence in adjacent habitats (P = 0.018), percent shrub cover (P = 0.039), and mesic environments within 1000 m of treatments (P = 0.048). Sage-grouse use of conifer treatments was negatively associated with conifer canopy cover (P = 0.048) within 1000 m of treatments. To investigate sample bias related to individual bird behavior or capture trauma I monitored 204 radio-marked sage-grouse within the West Box Elder and Rich-Morgan- Summit SGMAs in Utah between January 2012 and March 2013. Sage-grouse that flushed one or more times prior to capture had higher brood (P = 0.014) and annual survival (P = 0.027) than those that did not. Sage-grouse that experienced more capture trauma had decreased annual survival probabilities (P = 0.04).

Book Greater Sage Grouse Vital Rate and Habitat Use Response to Landscape Scale Habitat Manipulations and Vegetation Micro Sites in Northwestern Utah

Download or read book Greater Sage Grouse Vital Rate and Habitat Use Response to Landscape Scale Habitat Manipulations and Vegetation Micro Sites in Northwestern Utah written by Charles P. Sandford and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The greater sage-grouse (Centrocercus urophasianus; sage-grouse) has been a species of conservation concern since the early 20th century due to range-wide population declines. To contribute to knowledge of the ecology of sage-grouse populations that inhabit the Box Elder Sage Grouse Management Area (SGMA) in northwestern Utah and quantify their responses to landscape scale habitat manipulations, I monitored vital rates and habitat selection of 45 female sage-grouse from 2014 to 2015. Using telemetry locations of female sage-grouse with known nest and brood fates, I created Generalized Linear Mixed Models to estimate the influence of proximity to pinyon (Pinus spp.) and juniper (Juniperus spp.; conifer) encroachment, and removal projects may have on sagegrouse reproductive fitness in the Box Elder SGMA. The best fit model suggested that for every 1 km a nest was located away from a conifer removal area, probability of nest success was reduced by 9.1% (Îø = -0.096, P

Book Ecology of Isolated Greater Sage grouse Populations Inhabiting the Wildcat Knolls and Horn Mountain  South Central Utah

Download or read book Ecology of Isolated Greater Sage grouse Populations Inhabiting the Wildcat Knolls and Horn Mountain South Central Utah written by Christopher James Perkins and published by . This book was released on 2010 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Greater sage-grouse (Centrocercus urophasianus) currently inhabit about 56% of pre-settlement distribution of potential habitat. In 2005, the Castle Country Adaptive Resources Management Local Working Group (CaCoARM) was formed to address concerns regarding local sage-grouse populations in Carbon and Emery counties. In 2006-2007, CaCoARM identified the Wildcat Knolls and Horn Mountain as areas of special concern for greater sage-grouse conservation. Both sites selected by the group were inhabited by what appeared to be small isolated sage-grouse populations. Factors limiting small isolated greater sage-grouse populations throughout its range are diverse and largely site-specific. During 2008-2009, I captured, radio-collared, and monitored 43 sage-grouse between the two populations to document their ecology and seasonal habitat use patterns. The sites are only 24 km apart, but the populations appear to be isolated from each other. Sage-grouse on Horn Mountain and Wildcat Knolls are one-stage migratory and non-migratory, respectively. Although nesting and brooding success varied between sites, my results were comparable to those published in studies throughout the species' range. Overall male survival was lower on the Wildcat Knolls than Horn Mountain (P = 0.003). Hens that selected brood sites exhibiting increased shrub cover and grass height were more successful than hens that selected sites with lower shrub cover and lower grass height. Potential nesting habitat on the Wildcat Knolls and Horn Mountain were estimated at 2,329 and 5,493 ha, respectively. Hens that selected nest sites farther from non-habitat edge were more successful than hens that selected nest sites that were closer to non-habitat edge on the Wildcat Knolls. Higher nest success observed on the Wildcat Knolls was attributed to less habitat fragmentation. Isolated populations of greater sage-grouse are more susceptible to lower amounts of genetic diversity that may lead to inbreeding depression and increased rates of disease and parasites. I collected mitochondrial DNA samples from both the Wildcat Knolls and Horn Mountain populations. Although the haplotype frequencies recorded in the Wildcat Knolls and Horn Mountain populations were low, one was shared with several Utah populations. The documented low genetic diversity (especially on Horn Mountain) confirmed the isolation suspected by the local working group. Microsatellite tests may provide insights to enhance understanding of genetic differences among sites, and assist managers in determining whether or not translocations are necessary to maintain population genetic diversity. Biologists should not only continue to take samples for genetic comparison, but also record morphometric and behavior data.

Book The Role of Vegetation Structure  Composition  and Nutrition in Greater Sage Grouse Ecology in Northwestern Utah

Download or read book The Role of Vegetation Structure Composition and Nutrition in Greater Sage Grouse Ecology in Northwestern Utah written by Brian R. Wing and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The greater sage-grouse (Centrocercus urophasianus; sage-grouse) is the largest grouse species in North America and an indicator species for the condition of sagebrush (Artemisia spp.) ecosystems. The Box Elder Sage-Grouse Management Area (SGMA) in northwestern Utah encompasses one of the state0́9s largest sage-grouse populations. To fill knowledge gaps regarding the population inhabiting the Raft River subunit of the Box Elder SGMA, I captured, radio-marked, and monitored 123 (68 female, 55 male) sage-grouse from January 2012 through December 2013. My purpose was to describe how the seasonal movements, survival, and reproductive rates of this sage-grouse population are effected by small-scale habitat use and breeding season foraging patterns. Sage-grouse in the Raft River subunit have distinct winter and summer ranges, and some travelled long distances annually. Survival rates were similar to other Utah populations and range-wide averages. Nest and brood success rates were above range-wide averages and those reported in the adjacent Grouse Creek subunit of the same SGMA. Sage-grouse in the study area selected habitats with specific vegetation characteristics to fit their seasonal needs. Sage-grouse use sites differed from random sites with greater forb height, grass height, and shrub height and cover. Nest success rates were directly related to selected vegetation, as successful nests were located more often under sagebrush and within greater forb height and cover and grass and shrub height than unsuccessful nests. Brood sites were also greater in forb, grass, and shrub height than other use sites. In March and April of 2013, I located radio-marked sage-grouse at flock browse sites to observe their sagebrush diet selection patterns. Lab analyses showed no differences in nutritional quality or chemical composition between browsed sagebrush plants and non-browsed and random plants. However, browsed black sagebrush (A. nova) was lower in protein and higher in chemical content than browsed Wyoming big sagebrush (A. tridentata wyomingensis). Radio-marked females were frequently observed at sites where black sagebrush was browsed, and one individual chemical was considerably more concentrated in browsed plants associated with females that nested successfully. My research provides useful information regarding the seasonal habitat use patterns and vegetation preferences of sage-grouse in the Box Elder SGMA. To conserve the sage-grouse population in northwestern Utah, management actions must protect the seasonal habitats and vegetation that the species depends on for its productivity and survival.

Book Greater Sage grouse Response to Sagebrush Manipulations in Rich County  Utah

Download or read book Greater Sage grouse Response to Sagebrush Manipulations in Rich County Utah written by Roger Blair Stringham and published by . This book was released on 2010 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Management of greater sage-grouse (Centrocercus urophasianus) in the west has changed over the last several decades in response to environmental and anthropogenic causes. Many land and wildlife management agencies have begun manipulating sagebrush with herbicides, machinery, and fire. The intent of these manipulations (treatments) is to reduce sagebrush canopy cover and increase the density of grass and forb species, thus providing higher quality sage-grouse brood-rearing habitat. However, monitoring of sage-grouse response to such manipulations has often been lacking or non-existent. The objective of our study was to determine the response of sage-grouse to sagebrush reduction treatments that have occurred recently in Rich County, Utah. Our study areas were treated with a pasture aerator with the intent of creating sage-grouse brood-rearing habitat. We used pellet transects, occupancy sampling, and GPS radio telemetry to quantify sage-grouse habitat use in treated and untreated areas. Pellet transect, occupancy, and GPS radio telemetry methods all showed a strong pattern of sage-grouse use of treated sites during the breeding and early brood-rearing periods. Sage-grouse use of treated sites was greatest in lower elevation habitat (1950 to 2110 m), and use was highest during the breeding and early brood-rearing periods. We found very little use of higher elevation (2120 to 2250 m) treated or untreated sites. Our results suggest that sagebrush reduction treatments can have positive impacts on sage-grouse use at lower elevations and can be successful in creating brood-rearing habitat. Elevation differences and period of sage-grouse use were significant factors in our study in determining how beneficial sagebrush reduction treatments were for sage-grouse.

Book Winter Habitat Selection and Nesting Ecology of Greater Sage Grouse in Strawberry Valley  Utah

Download or read book Winter Habitat Selection and Nesting Ecology of Greater Sage Grouse in Strawberry Valley Utah written by Riley D. Peck and published by . This book was released on 2011 with total page 49 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study examined winter habitat use and nesting ecology of greater sage grouse (Centrocerus urophasianus) in Strawberry Valley (SV), Utah located in the north-central part of the state. We monitored sage grouse with the aid of radio telemetry throughout the year, but specifically used information from the winter and nesting periods for this study. Our study provided evidence that sage grouse show fidelity to nesting areas in subsequent years regardless of nest success. We found only 57% of our nests located within the 3 km distance from an active lek typically used to delineate critical nesting habitat. We suggest a more conservative distance of 10 km for our study area. Whenever possible, we urge consideration of nest-area fidelity in conservation planning across the range of greater sage grouse. We also evaluated winter-habitat selection at multiple spatial scales. Sage grouse in our study area selected gradual slopes with high amounts of sagebrush exposed above the snow. We produced a map that identified suitable winter habitat for sage grouse in our study area. This map highlighted core areas that should be conserved and will provide a basis for management decisions affecting Strawberry Valley, Utah.

Book Greater Sage grouse Habitat Selection and Use Patterns in Response to Vegetation Management Practices in Northwestern Utah

Download or read book Greater Sage grouse Habitat Selection and Use Patterns in Response to Vegetation Management Practices in Northwestern Utah written by Stephanie E Graham and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Greater sage-grouse (Centrocercus urophasianus; sage-grouse) currently occupy an estimated 56% of the potential range-wide pre-European settlement habitat. Population declines have been largely attributed to direct habitat loss and fragmentation related to anthropogenic activities that promote wildfires and the subsequent spread of invasive plants. Vegetation manipulations, including the seeding of plant species, such as forage kochia (Bassia prostrata), have been identified as potential strategies to mitigate the risk of wildfire and enhance sage-grouse habitat in areas at risk to wildfires. I evaluated the composition changes that occurred in a lower elevation sagebrush (Artemisia spp.) plant community within the Grouse Creek Watershed in western Box Elder County, Utah, USA, in response to prescribed vegetation manipulations (green-stripping through chain harrowing, juniper mastication, seeding forage kochia, applying Plateau℗ʼ herbicide) and studied the effect of these changes on sage-grouse habitat-use patterns and vital rates. I monitored 53 radio-collared sage-grouse throughout the Grouse Creek watershed from 2010-2012. Seasonal movements suggested local individual bird adaptations to annual variations in weather and habitat fragmentation. Sage-grouse selected for untreated areas; however, treated areas were used to expand the size of the lek. Untreated areas exhibited a higher percent composition of shrubs compared to areas that were chain harrowed to prepare a seedbed. Sage-grouse nest success and adult male survival rates during this study were relatively low compared to range-wide population estimates. Nest predation was higher for nests located closer to roads. The forage kochia seeded in the firebreaks emerged the season after seeding (2011). Using microhistological techniques, I detected small quantities of forage kochia in sage-grouse fecal pellets. Nutrient analysis confirmed that forage kochia samples collected from the sites exhibited a high protein content and low secondary metabolite content, similar to black sagebrush (Artemisia nova). Although green-stripping with forage kochia in lower elevation sagebrush communities may prove to be a beneficial technique for protecting rangelands from wildfire and provide a dietary source for wildlife, site preparation should be conducted to minimize the impact on existing sagebrush canopy cover habitats. Long-term monitoring should be implemented to determine extended effects of green-stripping treatments on sagebrush habitat and sage-grouse vital rates. Although individual sage-grouse demonstrated local adaptations to fragmentation and seasonal variations in weather, increased fragmentation and climate change in this part of the Great Basin may increase meta-population extirpation risks inhabiting lower elevation sagebrush areas in the Grouse Creek Watershed.

Book Factors Influencing the Ecology of Greater Sage grouse Inhabiting the Bear Lake Plateau and Valley  Idaho and Utah

Download or read book Factors Influencing the Ecology of Greater Sage grouse Inhabiting the Bear Lake Plateau and Valley Idaho and Utah written by Casey J. Cardinal and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Greater sage-grouse (Centrocercus urophasianus; sage-grouse) are a sagebrush obligate species and as such an indicator of sagebrush (Artemisia spp.) habitat quality and quantity. Sage-grouse populations have declined across western North America. This decline has been attributed to habitat loss and degradation of the sagebrush ecosystem. To determine factors that may cause localized declines in sage-grouse populations, managers may need site-specific information on the ecology and habitat use patterns of meta-populations. This information is currently lacking for sage-grouse populations that inhabit the Bear Lake Plateau and Valley (BLPV), encompassing parts of Idaho, Utah and Wyoming. I captured, radio-marked and monitored 153 sage-grouse in the BLPV from 20100́32012 to assess nest success, brood survival, mortality factors, and habitat use. Reproductive success was lower than range-wide averages, with especially low success in 2011. Nesting and brood rearing both showed higher success rates in 2012. Survival was very similar to estimates found elsewhere. Females had higher survival rates than males, and yearlings had higher survival probability than adults. Sage-grouse mortality was highest in summer and spring, and lowest in fall. Individual sage-grouse completed large scale movements, often using habitats in Idaho, Utah, and Wyoming. Important factors in sage-grouse habitat selection included distance to major road, distance to habitat edge, distance to vertical structure (i.e., communication towers, wind turbines, and transmission lines), and vegetation cover types. Sage-grouse tended to avoid major road and vertical structures (i.e., communication towers, wind turbines, and transmission lines). They also selected habitat further away from habitat edge. Vegetation types preferred by sage-grouse included shrubland habitats, wet meadows, and grassland. MaxEnt models did not place highest importance on sagebrush habitats, which are critical for sage-grouse presence. This could have occurred because the vegetation layers used in the model did not assess habitat quality. Models produced using the ten landscape variables and BLPV sage-grouse locations ranked good to excellent fits. State-defined habitat covered a larger extent than MaxEnt predicted habitat. MaxEnt predicted habitat areas may be used to further refine state identified core areas to assist in prioritization of conservation efforts to protect the BLPV sage-grouse population.

Book Validation of Winter Concentration Area Guidelines and Winter Habitat Ecology for Greater Sage grouse in the Red Desert  Wyoming

Download or read book Validation of Winter Concentration Area Guidelines and Winter Habitat Ecology for Greater Sage grouse in the Red Desert Wyoming written by Caitlyn Powell Wanner and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winter in temperate zones often represents a period of greatest energetic demand for vertebrate species. Animals respond to seasonal scarcity through behavioral strategies such as migration and selecting specific habitats characteristics to maximize resource acquisition and/or minimize energy expenditures. Migration or differential habitat use in winter can complicate goals of defining and conserving core habitat for species across increasingly fragmented landscapes. Greater sage-grouse (Centrocercus urophasianus, hereafter “sage-grouse”) is a species of conservation concern endemic to sagebrush (Artemisia spp.) steppe whose populations are most threatened by anthropogenic disturbance and concomitant degradation to sagebrush communities. Conservation of sage-grouse habitat is complicated by a partially-migratory annual cycle in most populations. Seasonal ranges (spring, summer/fall, and winter) may be integrated to any degree or non-overlapping. Efforts to conserve core habitat for sage-grouse have focused primarily on breeding ranges, which may not capture the needs of sage-grouse during other seasons, with winter habitat being least protected. Greater understanding of winter habitat requirements is needed to improve conservation for sage-grouse throughout their annual cycle. My thesis focused on multi-scale winter habitat ecology of greater sage-grouse (Centrocercus urophasianus) in the Red Desert of southcentral Wyoming, using GPS location data from winters 2018/2019, 2019/2020, and 2020/2021. My research encompassed a 1) landscape-scale validation of management guidelines for winter concentration areas as the second phase to a state-wide analysis, 2) habitat selection and behavior within home- and population-range scales as influenced by winter weather conditions, and 3) a fine-scale evaluation of microhabitat within home- and population-range scales during winter 2020/2021. My results support consideration of winter habitats in conservation plans for sage-grouse populations in rapidly changing landscapes. In Chapter 1, I conducted a systematic review of literature published in the last 46 years (1977–2022) on sage-grouse winter habitat selection and survival. Out of 32 compiled publications, I found that 59.4% of sage-grouse winter habitat literature was published in the last 10 years (2013–2022) and 53.1% of articles over the last 46 years reported avoidance of anthropogenic disturbance by sage-grouse during winter. The most recent recommendations for defining year-round priority habitat for sage-grouse recommend implementation of resource selection modeling for all seasonal periods. In Chapter 2, my research fulfilled the second phase of a larger effort to answer questions posed by the Wyoming Sage-Grouse Implementation Team, through the Winter Concentration Area Subcommittee, regarding sage-grouse winter habitat selection and response to anthropogenic disturbance. Phase 1 used existing datasets of sage-grouse GPS locations from 6 regions across Wyoming to model winter habitat selection and avoidance patterns of disturbance statewide. Results from Phase I formed the basis for developing recommendations for management of sage-grouse winter concentration areas in Wyoming. The purpose of my research in Chapter 2 was to validate results of Phase I modeling and evaluate if the statewide model accurately described sage-grouse winter habitat selection and anthropogenic avoidance in regions not considered in that modeling effort. I used 44,968 locations from 90 individual adult female grouse identified within winter habitat from winters 2018/2019, 2019/2020, and 2020/2021 in the Southern Red Desert region (my study area) for out-of-sample validation. The intent of my validations was to assess if models generated statewide or from a nearby region (Northern Red Desert) would be more effective in predicting sage-grouse habitat selection patterns in areas with little information. The statewide model better predicted sage-grouse habitat use at within-population scales and the near-region model was more predictive at within-home-range scales. I found some variation between regions and the statewide model but similar trends in environmental characteristics and avoidance of anthropogenic features even at low densities. My results from the Southern Red Desert support the recommendation from Phase 1 that anthropogenic surface disturbance should be limited to low levels (≤ 2.5%) within winter concentration areas to conserve sage-grouse winter habitat. In Chapter 3, my research focused on shifting environmental conditions that influence patterns of sage-grouse winter habitat selection. Sage-grouse are physically well adapted to winter conditions; it’s a common assumption that winter weather has little effect on sage-grouse. However, research results have varied in support of this assumption, with significant die-offs correlated to periods of extreme winter weather. My research used daily winter weather conditions to explain sage-grouse winter behavior and habitat selection. I used sage-grouse GPS locations from the Southern Red Desert over winters 2018/2019 and 2019/2020 and obtained local weather conditions for each winter from SnowModel. SnowModel used available meteorological data, landscape characteristics, and snow physics to predict weather conditions at a 30-m resolution and daily scale. By comparing habitat selection and behavior across fine temporal scales, I found that sage-grouse responded to daily weather conditions by selecting refugia habitat more than altering daily activity levels. My results suggest that, in addition to landscape features, sage-grouse selected home ranges at the population scale for warmer wind chill temperatures and greater windspeed. Within home ranges, sage-grouse appeared to respond to harsher weather (lower wind chill temperature and high wind speeds) by selecting greater sagebrush cover and leeward sides of ridges. Our research underlines the importance of examining winter habitat at narrower temporal scales than the entire winter season to identify important refugia features that may only be used periodically. Additional research into quantifying weather refugia for wintering sage-grouse populations may provide greater insight to the future sustainability of winter ranges. In Appendix A, I compared winter microhabitat characteristics at 90 sage-grouse use sites from the 2019/2020 winter with 90 available sites within the population range and 90 available sites within home ranges. I predicted habitat characteristics at grouse use locations would be more similar to paired random locations within the home range than to random locations within the population range. I also predicted that, because sage-grouse select specific habitat characteristics, there would be fewer differences when comparing random available locations between the home and population range than comparisons of used and available habitat. I found no support for my first prediction and strong support for my second prediction. Sage-grouse dung piles were 7.0- and 9.9-times higher at used locations than random locations within home and population ranges, respectively. Our results suggested that sage-grouse are highly selective for microhabitat. Sage-grouse selected areas with higher big sagebrush (Artemisia spp.) and overall canopy cover, big sagebrush height, and visual obstruction compared to random locations within home and population ranges. Our results indicate concealment cover is important to sage-grouse throughout their annual cycle.

Book The North American Grouse  Their Biology and Behavior

Download or read book The North American Grouse Their Biology and Behavior written by Paul Johnsgard and published by Lulu.com. This book was released on 2016 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ten currently recognized species of grouse in North America have played an important role in America's history, from the famous but ill-fated heath hen, a primary source of meat for the earliest New England immigrants, to the ruffed grouse, currently one of the most abundant and soughtafter upland game birds in more than 40 states and provinces. This book summarizes the ecology, reproductive biology, and social behavior of all ten of the extant North American grouse species. It also describes the current status of grouse populations, some of which are perilously close to extinction. The social behavior of grouse is of special biological interest because among these ten species there is a complete mating system spectrum, from seasonally monogamous pair-bonding to highly promiscuous mating patterns. The latter group illustrates the strong structural and behavioral effects of sexual selection resulting from nonmonogamous mating. These influences reach a peak in the development by some grouse species of engaging in mating "leks," arena-like competitions performed by males while attempting to attract fertile females, and also provide opportunities for females to select optimum mating partners. These sexual competitions also promote strong differences evolving in sexual signaling behaviors ("displays") among closely related species. Nevertheless, a relatively high incidence of mating errors and resulting hybridization often occurs in spite of these marked behavioral differences. In addition to a text of 101,000 words, the book includes 16 range maps, 37 line drawings, and 38 photographs by the author, as well as nearly 1,400 literature citations.

Book The Ecology of Translocated Greater Sage grouse in Strawberry Valley  Utah

Download or read book The Ecology of Translocated Greater Sage grouse in Strawberry Valley Utah written by Rick Joseph Baxter and published by . This book was released on 2007 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manuscript No. 2 Nesting habitat of resident greater sage-grouse in extant populations across the species range has been thoroughly described in the literature, yet very little is known about the use of nesting habitat by translocated sage-grouse. In order to better understand nesting habitat selection by translocated sage-grouse in a new environment, we trapped grouse during the spring on and near leks of source populations. We placed each female in a cardboard box and translocated them overnight to the Strawberry Valley. Each female was fitted with a radio-transmitter and released near the lek where males were actively strutting. We monitored grouse for nesting activity. We documented nesting attempts, nest success, clutch size and embryo viability. We recorded data on habitat variables associated with nest sites and paired-random sites. We used logistic regression and an a priori information theoretic approach for modeling nest versus paired-random sites and successful versus unsuccessful nest sites. Our data suggested that crown area of the nest shrub and percent grass cover were the two variables that discriminated between nest and paired-random sites. Females that nested successfully selected sites with more total shrub canopy cover, intermediate size shrub crown area, a normal distribution of aspects, and with steeper slopes than unsuccessful nests. Translocated females selected suitable nesting habitat after being moved from source populations with differing habitats.

Book Seasonal Habitat Selection and Breeding Ecology of Greater sage grouse in Carbon County  Montana

Download or read book Seasonal Habitat Selection and Breeding Ecology of Greater sage grouse in Carbon County Montana written by Erin Leslie Gelling and published by . This book was released on 2022 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Greater sage-grouse (Centrocercus urophasianus; hereafter ‘sage-grouse’) are the focus of much research and conservation efforts owing to their obligate relationship with sagebrush (Artemisia spp.) and dramatic population declines over the last 50 years. Sage-grouse are a partially migratory species with three main seasonal habitats during breeding, summer, and winter. Anthropogenic disturbances can impact habitat and areas used by sage-grouse during all three seasons. Sage-grouse also exhibit low productivity that is limited, in part, by nest and chick survival. As uniparental incubators, nesting can be energetically costly for female sage-grouse because they have limited mobility when their precocial chicks are young. In addition, habitat characteristics have been shown to differ between brood-rearing female sage-grouse and broodless females (i.e., females without broods). Therefore, to sustain sage-grouse populations, focus should be on increasing vital rates for adult females, chicks, and nests—the life stages that most influence population growth. Research is thus critical to better understand the relationships between life stages of sage-grouse and their seasonal habitats, particularly during breeding and summer brood-rearing. The focus of my thesis was to assess the influence of natural and anthropogenic features on sage-grouse seasonal habitat selection, assess factors influencing sage-grouse nest survival and attentiveness, and assess habitat selection and behavior between brood-rearing and broodless female sage-grouse. By focusing on habitat selection across three seasons, during reproductive and non-reproductive states, and across second, third, and fourth-order habitat selection, wildlife managers will have better information to manage sage-grouse habitat to sustain or increase survival for adult females, broods, and nests. More specifically, this information will inform areas to prioritize management, restoration, and conservation to benefit sage-grouse populations and add to the body of knowledge of basic sage-grouse breeding ecology. In Chapter 1, I examined natural and anthropogenic landscape features that influence sage-grouse habitat selection during breeding, summer, and winter seasons. I used data from 85 GPS-tagged female sage-grouse in Carbon County, Montana and Park County, Wyoming spanning April 2018–April 2020. I found natural and anthropogenic features combined best explained sage-grouse habitat selection for all three seasons. Sage-grouse habitat selection differed between each season with sagebrush cover being important for breeding and agricultural fields being important in summer. In general, sage-grouse selected for sagebrush or shrub characteristics and lower slopes and avoided major roads, residential development, and oil and gas. However, anthropogenic disturbances were not always avoided and sometimes sage-grouse selected areas closer to these disturbances, such as agricultural fields during summer or roads during winter. I created predictive maps from resource selection function modeling to depict relative probability of use for each seasonal range to be used in wildlife management and conservation planning. In Chapter 2, I focused on nest survival and attentiveness. Nest success is an important part of the breeding process that has implications for population growth. I described sage-grouse incubation behavior, examined whether sage-grouse incubation behavior influenced nest survival, and evaluated factors that influenced sage-grouse incubation behavior. For this chapter, I used data collected from my study area in Carbon County, Montana and Park County, Wyoming and a separate study area in the Red Desert of Carbon and Sweetwater counties, Wyoming. I used 131 nests to describe sage-grouse incubation behavior and 118 nests to examine nest survival and average recess duration. I found nest survival was higher in Bridger compared to Red Desert. I found incubation constancy was higher and recesses shorter for adults compared to yearlings. I found nest survival was higher with increased minimum temperature and reduced with longer recesses. Recess duration was shorter with greater sagebrush cover within 30 m and recesses were longer with higher minimum temperature and day of incubation. Factors influencing nest survival and incubation patterns will be important for directing management to improve sage-grouse nest success and to clarify to researchers and managers our understanding of the basics of sage-grouse nesting biology. In Chapter 3, I focused on habitat selection, activity patterns, and ranges of both brood-rearing and broodless females during the breeding season. I examined behavior and reproductive state influence on microhabitat selection, daily and seasonal range sizes, and daily activity levels for brood-rearing and broodless females. I sampled microhabitat for 36 females, estimated ranges for 38 females, and measured activity for 43 females. I found females with broods 0–2 weeks selected microhabitat characteristics when night roosting and females with broods 3–5 weeks selected microhabitat characteristics when foraging and night roosting. However, broodless females showed no selection for microhabitat based on behavior. I also found differences in activity levels for both brood-rearing and broodless females throughout the day. Broods 0–2 weeks had the smallest ranges while broods 3–5 weeks and broodless females had larger daily and seasonal ranges. Differences in habitat selection, range size, and behavior warrants management to conserve areas used by both brood-rearing and broodless female sage-grouse in a population, whereas most past efforts focused primarily on habitat used by brood-rearing females. The Wildlife Society Bulletin has accepted this chapter for publication with Drs. Jeffrey Beck and Aaron Pratt as coauthors.

Book Sage Grouse Ecology and Management in Northern Utah Sagebrush steppe

Download or read book Sage Grouse Ecology and Management in Northern Utah Sagebrush steppe written by and published by . This book was released on 2002 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt: Observations of sage grouse (Centrocercus urophasianus) movements, habitat-use and population demographics were obtained 1985-2001 in Rich County, Utah.