EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Gravity Field Estimation for Next Generation Satellite Missions

Download or read book Gravity Field Estimation for Next Generation Satellite Missions written by Christopher Michael McCullough and published by . This book was released on 2017 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the past, nearly 15 years, the Gravity Recovery and Climate Experiment (GRACE) has provided an invaluable view of mass variability in the Earth system. During its time on orbit it has enabled unprecedented contributions to hydrology, oceanography, and the cryosphere; however, GRACE is currently approaching the end of its lifetime. As this approaches and future dedicated satellite gravity missions are poised to continue its legacy, it's important to highlight limitations in our current knowledge and explore areas of improvement for future analysis. This work returns to the first principles of gravity field estimation and explores some of the basic assumptions and idiosyncrasies inherent in the estimation of Earth's gravitational field. Current gravity field estimation from GRACE attempts to optimally combine GPS observables, which provide absolute positioning, with high accuracy, relative inter-satellite measurements (KBR). While an optimal data fusion procedure is utilized, empirical analysis has indicated that artificial down-weighting of the GPS observable provides significant improvements to estimates of the gravitational field. The necessity of this ad-hoc treatment signals a misunderstanding in the contribution of each observable to gravity field estimates and deficiencies in the modeling of each observable. The analysis of this misunderstanding begins with an examination of the GPS observable's ability to independently recover estimates of the spherical harmonic coefficients. This not only provides insight into the effect of GPS on the gravitational field, but examines the efficacy of using a single satellite to fill a possible gap between GRACE and its follow-on mission. While these single satellite derived gravitational fields have limited accuracy, their combination with satellite laser ranging (SLR) allows for the determination of large spatial scale, long term trends from low degree harmonics (7x7). Additionally, thorough examination of the combined gravity field solutions indicates that the GPS observable is vital to stabilization of estimated parameters which perturb at low frequencies, a significant weakness for the relative inter-satellite ranging observable. These low frequency parameters -- which include the satellite initial conditions, accelerometer dynamicals, low degree harmonics, sectorial harmonics, and harmonics of resonant order -- are also the most susceptible to contamination by dynamical modeling error. Therefore, it is necessary to stochastically model the observation error with high fidelity, most notably the frequency dependence caused by errors in the background dynamical models. Accurate stochastic modeling of the observables is achieved by reexamining the GRACE estimation problem from the Bayesian perspective. This viewpoint highlights typical assumptions made in nominal GRACE processing, most importantly that observation errors are independently Gaussian distributed. Analysis of this assumption indicates its inaccuracy, necessitating the utilization of algorithms which enable modeling of the frequency dependence of the observable errors, through the observation covariance. The most important of these error sources is the manifestation of dynamical modeling error, which perturbs predominantly at low frequency and the orbital period, similarly to the main contributions of the GPS observable. Accounting for the frequency dependence of the observation errors shows the ability to improve optimal data fusion, reduce error in estimates of the gravitational field by mitigating stripes and, most importantly, drastically improves the formal characterization of error in the estimated gravitational fields; facilitating scientific interpretation and prognostication of Earth's climate variability, optimal combination with independent datasets and a priori constraints, and optimal assimilation of GRACE data products with Earth system models.

Book Global Gravity Field Modeling from Satellite to Satellite Tracking Data

Download or read book Global Gravity Field Modeling from Satellite to Satellite Tracking Data written by Majid Naeimi and published by Springer. This book was released on 2017-02-10 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a sound theoretical basis for the the different gravity field recovery methods and the numerics of satellite-to-satellite tracking data. It represents lectures given at the ‘Wilhelm and Else Heraeus Autumn School’ in Bad Honnef, Germany, October 4-9, 2015. The emphasis of the school was on providing a sound theoretical basis for the different gravity field recovery methods and the numerics of data analysis. The approaches covered here are the variational equations (classical approach), the acceleration approach and the energy balance approach, all of which are used for global gravity field recovery on the basis of satellite observations. The theory of parameter estimation in satellite gravimetry and concepts for orbit determination are also included. The book guides readers through a broad range of topics in satellite gravimetry, supplemented by the necessary theoretical background and numerical examples. While it provides a comprehensive overview for those readers who are already familiar with satellite gravity data processing, it also offers an essential reference guide for graduate and undergraduate students interested in this field.

Book Future Satellite Gravimetry and Earth Dynamics

Download or read book Future Satellite Gravimetry and Earth Dynamics written by Jakob Flury and published by Springer Science & Business Media. This book was released on 2007-01-25 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: New and more accurate techniques for satellite gravimetry will be available soon, with promising applications in Earth sciences. With this special issue the authors want to stimulate discussion among Earth scientists on objectives and preferences for future satellite gravimetry missions. This is an urgently needed discussion. Visions for follow-on missions have to be developed today, if they are to be realized within 10 years, given the required preparation time of such satellite missions.

Book Observation of the Earth System from Space

Download or read book Observation of the Earth System from Space written by Jakob Flury and published by Springer Science & Business Media. This book was released on 2006-02-28 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth’s shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA’s planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses. For GOCE, to be launched in 2006, new gravity ?eld analysis methods are under development and integrated into the ESA processing s- tem. 200,000 GPS radio occultation pro?les, observed by CHAMP, have been processed on an operational basis. They represent new and excellent inf- mation on atmospheric refractivity, temperature and water vapor. These new developments require geodetic space techniques (such as VLBI, SLR, LLR, GPS) to be combined and synchronized as if being one global instrument.

Book Geodetic Time Series Analysis in Earth Sciences

Download or read book Geodetic Time Series Analysis in Earth Sciences written by Jean-Philippe Montillet and published by Springer. This book was released on 2019-08-16 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an essential appraisal of the recent advances in technologies, mathematical models and computational software used by those working with geodetic data. It explains the latest methods in processing and analyzing geodetic time series data from various space missions (i.e. GNSS, GRACE) and other technologies (i.e. tide gauges), using the most recent mathematical models. The book provides practical examples of how to apply these models to estimate seal level rise as well as rapid and evolving land motion changes due to gravity (ice sheet loss) and earthquakes respectively. It also provides a necessary overview of geodetic software and where to obtain them.

Book Physically Consistent System Model for the Study of the Earth s Rotation  Surface Deformation and Gravity Field Parameters

Download or read book Physically Consistent System Model for the Study of the Earth s Rotation Surface Deformation and Gravity Field Parameters written by Andreas Hense and published by . This book was released on 2009 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Satellite Gravity and the Geosphere

Download or read book Satellite Gravity and the Geosphere written by National Research Council and published by National Academies Press. This book was released on 1997-09-02 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the past three decades, it has been possible to measure the earth's static gravity from satellites. Such measurements have been used to address many important scientific problems, including the earth's internal structure, and geologically slow processes like mantle convection. In principle, it is possible to resolve the time-varying component of the gravity field by improving the accuracy of satellite gravity measurements. These temporal variations are caused by dynamic processes that change the mass distribution in the earth, oceans, and atmosphere. Acquisition of improved time-varying gravity data would open a new class of important scientific problems to analysis, including crustal motions associated with earthquakes and changes in groundwater levels, ice dynamics, sea-level changes, and atmospheric and oceanic circulation patterns. This book evaluates the potential for using satellite technologies to measure the time-varying component of the gravity field and assess the utility of these data for addressing problems of interest to the earth sciences, natural hazards, and resource communities.

Book Efficient Global Gravity Field Determination from Satellite to satellite Tracking

Download or read book Efficient Global Gravity Field Determination from Satellite to satellite Tracking written by and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: By the middle of this decade, measurements from the CHAMP (CHAllenging of Minisatellite Payload) and GRACE (Gravity Recovery And Climate Experiment) gravity mapping satellite missions are expected to provide a significant improvement in our knowledge of the Earth's mean gravity field and its temporal variation. For this research, new observation equations and efficient inversion method were developed and implemented for determination of the Earth2s global gravity field using satellite measurements. On the basis of the energy conservation principle, in situ (on-orbit) disturbing potential and potential difference observations were computed using data from accelerometer- and GPS receiver-equipped satellites, such as CHAMP and GRACE. The efficient iterative inversion method provided the exact estimates as well as an approximate, but very accurate error variance-covariance matrix of the least squares system for both satellite missions. The global disturbing potential observable computed using 16-days of CHAMP data was used to determine a gravity field solution (OSU02A), is commensurate in geoid accuracy to other gravity models and yields improvement in the polar region at wavelengths longer than 800 km. The annual variation of Earth's gravitational field was estimated and compared with other solutions from satellite laser ranging analysis. The annual geoid change of 1 mm would be expected mostly due to atmosphere, continental surface water, and ocean mass redistribution. The correlation between CHAMP and SLR solutions was 0.6 to approx 0.8 with 0.7 mm of RMS difference. Based on the monthly GRACE simulation, the geoid was obtained with an accuracy of a few cm and with a resolution (half wavelength) of 160 km. However, the geoid accuracy can become worse by a factor of 7 because of spatial aliasing. The approximate error covariance was found to be a very good accuracy measure of the estimated coefficients, geoid, and gravity anomaly. The resulting recovered temporal gravity fields have about 0.2 mm errors in terms of geoid height with a resolution of 670 km. It was quantified that how significant the effects due to the inherent modeling errors and temporal aliasing caused by ocean tides, atmosphere, and ground surface water mass are on monthly mean GRACE gravity estimates.

Book Remote Sensing by Satellite Gravimetry

Download or read book Remote Sensing by Satellite Gravimetry written by Thomas Gruber and published by MDPI. This book was released on 2021-01-19 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last two decades, satellite gravimetry has become a new remote sensing technique that provides a detailed global picture of the physical structure of the Earth. With the CHAMP, GRACE, GOCE and GRACE Follow-On missions, mass distribution and mass transport in the Earth system can be systematically observed and monitored from space. A wide range of Earth science disciplines benefit from these data, enabling improvements in applied models, providing new insights into Earth system processes (e.g., monitoring the global water cycle, ice sheet and glacier melting or sea-level rise) or establishing new operational services. Long time series of mass transport data are needed to disentangle anthropogenic and natural sources of climate change impacts on the Earth system. In order to secure sustained observations on a long-term basis, space agencies and the Earth science community are currently planning future satellite gravimetry mission concepts to enable higher accuracy and better spatial and temporal resolution. This Special Issue provides examples of recent improvements in gravity observation techniques and data processing and analysis, applications in the fields of hydrology, glaciology and solid Earth based on satellite gravimetry data, as well as concepts of future satellite constellations for monitoring mass transport in the Earth system.

Book Modeling and Optimization in Space Engineering

Download or read book Modeling and Optimization in Space Engineering written by Giorgio Fasano and published by Springer Science & Business Media. This book was released on 2012-10-23 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a selection of advanced case studies that address a substantial range of issues and challenges arising in space engineering. The contributing authors are well-recognized researchers and practitioners in space engineering and in applied optimization. The key mathematical modeling and numerical solution aspects of each application case study are presented in sufficient detail. Classic and more recent space engineering problems – including cargo accommodation and object placement, flight control of satellites, integrated design and trajectory optimization, interplanetary transfers with deep space manoeuvres, low energy transfers, magnetic cleanliness modeling, propulsion system design, sensor system placement, systems engineering, space traffic logistics, and trajectory optimization – are discussed. Novel points of view related to computational global optimization and optimal control, and to multidisciplinary design optimization are also given proper emphasis. A particular attention is paid also to scenarios expected in the context of future interplanetary explorations. Modeling and Optimization in Space Engineering will benefit researchers and practitioners working on space engineering applications. Academics, graduate and post-graduate students in the fields of aerospace and other engineering, applied mathematics, operations research and optimal control will also find the book useful, since it discusses a range of advanced model development and solution techniques and tools in the context of real-world applications and new challenges.

Book Temporal Gravity Recovery from Satellite to satellite Tracking Using the Acceleration Approach

Download or read book Temporal Gravity Recovery from Satellite to satellite Tracking Using the Acceleration Approach written by Chaoyang Zhang (Ph. D. in geodetic science) and published by . This book was released on 2020 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The temporal gravity solutions estimated from NASA/DLR’s Gravity Recovery And Climate Experiment (GRACE) mission, and its successor, NASA/GFZ’s GRACE Follow-On (GRACE-FO), manifested as mass transports within the Earth system, have been used for a wide variety of Earth Science and climate change studies since 2002. However, there is an around one-year gap between the two satellite gravity missions (2017-2018). ESA’s fifth Earth Explorer Mission, the Swarm 3-satellite constellation, equipped with geodetic quality GNSS tracking system, was proposed to fill the gravimetry observation climate record data gap, at a moderate spatial resolution. Here, I applied a modified decorrelated acceleration approach to recover temporal gravity field using the 3-satellite Swarm constellation GPS tracking data. This approach is based on the simple linear relation between the second time derivative of the orbit and the gravitational acceleration. However, the time derivative could highly amplify the noise and make the noise correlated. In addtion, GPS positioning also involves correlation noise. Therefore, two linear transformations were introduced to decorrelate the observation noise. Next, two adjustment methods were studied to optimally combine the three gravity components, namely along-track, cross-track, and radial direction, along with introducing relative weights among orbital arcs for the final optimal gravity field estimation. The Swarm-only temporal gravity solutions have a good to excellent agreement with the overlapping GRACE/GRACE-FO solutions at least up to spherical harmonics degree around 13 (~1500 km, half-wavelength). Swarm-only temporal gravity solutions were then used to fill the mass change data gap over Greenland and West Antarctica ice-sheets during 2017-2018. Over Greenland, Swarm observed mass anomalies agreed well within the time epochs that overlaped with GRACE (correlation coefficient (CC) = 0.62), and GRACE-FO (CC=0.78). Within the data gap year, Swarm observed mass anomalies were relatively small suggesting that the Greenland mass loss slowed down, where the estimated short-term linear trend dropped from -54.3 ± 1.9 mm/yr (2013-2016 from GRACE) to -13.3 ± 7.5 mm/yr (2016-2018 from Swarm). In addition, as compared with the relatively quiet 2015-2017 at 13.5 ± 14.7 mm/yr, Swarm observed a fast ice mass loss episode at -89.2 ± 9.4 mm/yr during the gap year over West Antarctica, which agreed well with the estimate from GRACE and GRACE-FO without considering the gap at -92.8 ± 2.8 mm/yr during 2017-2019. This fast mass loss episode observed by Swarm also supports that the offset between GRACE and GRACE-FO time series is indeed due to mass loss but not a systematic bias. The official GRACE/GRACE-FO gravity products are derived from K-/Ka Band range (KBR) rate observations. Alternatively, the range acceleration observations could be used to estimate temporal gravity based on the so-called acceleration approach. In this study, by means of satellite orbit refinement, novel error mitigation schemes, and proper stochastic model estimation, the representation of range accelration was significantly improved in the acceleration equation (admittance spectrum dropped from up to 7 to around 1), and the in-situ line-of-sight gravity difference (LOSGD) was estimated with a high fidelity (CC = 0.96 with Level 2 data predicted LOSGD). For the first time, the improved acceleration approach was implemented for global temporal gravity recovery using GRACE and GRACE-FO observed range accelerations. The temporal gravity solutions recovered using this approach are, in general, in good agreement with the GRACE official Level 2 data products, based on the comparisons of the global mass variation trends, and basin-scale mass anomalies times series. Particularly, the gravity solution correlations between solutions in this study and other solutions are higher during the GRACE-FO time span. Despite the loss of an accelerometer onboard one of the GRACE-FO satellites, this closer comparison could be attributable to the improved range observation quality and the reduced noise level, which is clearly shown in the gravity inversion formal error. Because the high-low GPS tracking data were not used in this study, the low degree sectoral coefficients are believed to be slightly degraded compared to other solutions. The conventional GRACE/GRACE-FO temporal gravity solutions are at monthly sampling, which cannot easily be used to study sub-monthly mass transport events. However, the satellite ground track coverage varies from time to time. For the denser coverage time, a sub-monthly temporal resolution could be reached. A shorter solution data span, less than half of the nominal monthly data span, would enable observing signals which propagates quicker than a month. I employed the improved acceleration approach developed in this study to estimate solutions for every 13 days with one day sliding windows, which gives a daily sampling rate. The daily mass anomalies estimated from these solutions are shown to have a high correlation with the Morakot Typhoon (2009) induced precipitation evolutions (CC=0.87). It is shown that GRACE data is able to monitor the Morakot Typhoon induced massive rainfall during its landfall over Taiwan, which lasted only several days, though left a vast destruction on human lives and properties. In addition to the conventional spherical harmonic solutions, the GRACE/GRACE-FO Data Centers also deliver alternative data products called the “mascon solution”. Constraints are applied during the inversion so that it is free from the conventional GRACE post-processing. This advantage makes it a better candidate for coastal sediment deposition studies. Here, I used the University of Texas Center for Space Research (CSR) RL06 mascon data product to quantify the sediment deposition in the Bay of Bengal. By subtracting the Glacial Isostatic Adjustment (GIA) forward model predicted mass anomalies, ocean mass anomalies and the early Holocene Sediment Isostatic Adjustment (SIA) forward model predicted mass anomalies from the total mass change observed by GRACE (2002-2017), I obtained the mass anomalies estimation induced by the sediment discharge and transport in the Bay area. The corresponding sediment deposition rate estimate is 0.5± 0.2 Gt/yr, which is only half of the Brahmaputra river annual sediment discharge. This study also suggested the current SIA model tended to underestimate the SIA induced subsidence approximately by a factor of 2. In conclusion, the gravity solutions estimated from Swarm GPS tracking data using the modified decorrelation acceleration approach are capable to capture temporal gravity signals up to around degree 13. The Swarm-only solutions are shown to be able to fill the data gap between GRACE and GRACE-FO over West Antarctica and directly observe a fast mass loss episode. For GRACE and GRACE-FO, the improved acceleration approach has estimated the in-situ LOSGD with a high quality as indicated by the high correlation (CC=0.96) with L2 product predicted values and the monthly gravity solutions estimated from LOSGD have a good to excellent agreement with the official L2 products. The resulting GRACE daily sampled 13-day gravity solutions are capable to observe and quantify the evolution of an example abrupt weather episode, the landfall of the 2009 Morakot Typhoon over Taiwan. The demonstration of this novel monitoring of cyclone, for the first time, allows feasibility of using gravimetry data for possible disaster management.

Book Gravity Field Analysis from the Satellite Missions CHAMP and GOCE

Download or read book Gravity Field Analysis from the Satellite Missions CHAMP and GOCE written by Martin Wermuth and published by . This book was released on 2008 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Utilization of Simulated GRACE Inter satellite Range accelerations to Estimate Earth s Gravity Field

Download or read book Utilization of Simulated GRACE Inter satellite Range accelerations to Estimate Earth s Gravity Field written by Matthew Scott Smith and published by . This book was released on 2018 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Gravity Recovery and Climate Experiment (GRACE) provides high-precision K-band Ranging (KBR) data which has been instrumental in improving our understanding of the monthly mass redistribution within the Earth system, and consequently its static and time-varying gravity fields. In practice, estimation of the Earth's gravity field with data from GRACE-like missions is typically done via the range-rate pseudo-observations. This approach is widely used and produces high-quality solutions, however there does exist a well-known North-South striping error in the resulting gravity field. It is thought there may be a potential benefit from utilizing instead the range-acceleration pseudo-observations, which should be sensitive to more spatially-localized mass variations in the signal, thereby reducing the N-S errors in the gravity field and facilitating more precise estimation to higher degrees. Most solutions obtained from range-accelerations to date have been unusable at worst and lesser in quality at best when compared to range-rate derived gravity field solutions. Current understanding is that this is due to the time-differentiation of the KBR signal required to obtain the range-acceleration measurements. The differentiation process acts as a high-pass filter, degrading the signal-to-noise ratio (SNR) at high frequencies, and thus the quality of the solution. The purpose of this work, which explores variational methods solely, is to discover what conditions, if any, make it possible to generate feasible solutions via range-accelerations, and to compare them to one obtained via range-rate. A 180x180 range-rate based gravity field solution produced from simulated August 2008 data was used as a baseline for these comparisons. It is demonstrated that adjusting the parameters of the currently-used filter for obtaining the range-accelerations provides some improvement in the resulting solutions. Conversely, attempts with an alternative approach to filtering the range measurements yielded no benefit over the current method, and only served to degrade the solutions further. However, through an application of filtering the range residuals instead, this research suggests that the culprit is not solely the noise induced by differentiation, but the inclusion of other noisy measurements necessary for the computation of the range-acceleration measurement equation. Through this new method, it is shown that not only are range-accelerations viable for estimating the gravity field, but they can produce solutions more accurate at higher degrees than their range-rate counterparts. While these results are encouraging for processing the range-accelerations, the same technique can be applied to range-rate based solutions, which produces similar improvements and again establishes that quantity as the most suitable for estimating the gravity field, for now.

Book An Analysis of Gravity Field Estimation Based on Intersatellite Dual 1 Way Biased Ranging

Download or read book An Analysis of Gravity Field Estimation Based on Intersatellite Dual 1 Way Biased Ranging written by and published by . This book was released on 1999 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: The GRACE (Gravity Recovery And Climate Experiment) mission is designed to make global, highly accurate measurements of the Earth's gravity field with high spatial resolution. Ancillary GPS occultation measurements are also to be carried out for atmospheric monitoring. In the dual-1-way biased ranging of this mission, the range between two satellites separated by 100 to 200 km in nearly polar, coplanar, circular orbits, is measured to very high precision, to within an additive constant, through the exchange of K- and Ka-band sinusoidal signals. Such biased ranging data, along with GPS L-band range and phase data, can be processed and fit over successive multiday intervals to obtain accurate estimates of the Earth's gravity field. This report approximately models and analyzes this process, from the generation of the RF signals at the two satellites through the extraction of the geopotential. The steps include generation of the transmitted signals, processing the received signals to extract high-rate baseband phase, carrying out a dual-1-way combination of baseband phase to extract high-rate biased range for each band, combining K- and Ka-band ranges to correct for the ionosphere effect, and processing the resulting high-rate biased range values to extract three types of reduced-rate observables: biased range, range rate and range acceleration. The version of dual-1-way biased ranging developed by this report improves upon previous versions in a number of ways: highly accurate satellite-timetag corrections derived from concurrent GPS data, better baseband phase extraction using highly digital processing, highly accurate USO-rate calibration derived from concurrent GPS data, an improved method for extracting high-rate biased range from baseband phase, improved filtering for extracting reduced- rate observables from high-rate biased range, and parallel extraction of three observable types.

Book Error Budget of Future Satellite Missions Monitoring Gravity Field Time Variations

Download or read book Error Budget of Future Satellite Missions Monitoring Gravity Field Time Variations written by Lisa Pertusini and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Juno Mission

    Book Details:
  • Author : Scott Bolton
  • Publisher : Springer
  • Release : 2018-09-14
  • ISBN : 9789402415599
  • Pages : 644 pages

Download or read book The Juno Mission written by Scott Bolton and published by Springer. This book was released on 2018-09-14 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Juno mission to Jupiter is one of the most ambitious, daring and challenging solar system exploration missions ever conceived. Next to the Sun, Jupiter is the largest object in our solar system. As such, it is both a record and driver of the formation and evolution of the planets -- no other object in our solar system can tell us more about the origin of planetary systems. Understanding the details of giant planet formation, structure, composition and powerful magnetospheric environment required a new perspective close up and over the poles of Jupiter -- an orbit never before attempted. Juno was specifically designed for this challenge, entering into the harshest planetary environment known in the solar system. This volume describes the mission design, scientific strategies and instrument payload that enable Juno to peer deep into Jupiter’s atmosphere and reveal the fundamental process of the formation and early evolution of our solar system. In these papers, the Juno instrument teams describe their investigations, which include gravity radio science, microwave radiometers, magnetometers, an infrared imager auroral mapper, an ultraviolet imager and spectrograph, a visible light imager known as JunoCam, low and high energy particle detectors and plasma wave and radio electromagnetic sensors. The articles also describe a radiation monitoring experiment and the extensive laboratory measurements undertaken to assist with the analysis and interpretation of Juno’s pioneering investigation of Jupiter’s deep atmosphere. Originally published in Space Science Reviews, Volume 213, Issue 1-4, November 2017