EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analysis of Gravitational Wave Data

Download or read book Analysis of Gravitational Wave Data written by Piotr Jaranowski and published by Cambridge University Press. This book was released on 2009-08-27 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing gravitational-wave data analysis, this book is an ideal starting point for researchers entering the field, and researchers currently analyzing data. Detailed derivations of the basic formulae enable readers to apply general statistical concepts to the analysis of gravitational-wave signals. It also discusses new ideas on devising the efficient algorithms.

Book Gravitational Wave Physics and Astronomy

Download or read book Gravitational Wave Physics and Astronomy written by Jolien D. E. Creighton and published by John Wiley & Sons. This book was released on 2012-01-09 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitational wave astronomy and astrophysics.

Book Gravitational Wave Data Analysis

Download or read book Gravitational Wave Data Analysis written by B.F. Schutz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this book represent the major contributions at the NATO Advanced Research Workshop that was held from 6 to 9 July 1987 in the magnificent setting of Dyffryn House and Gardens, in St. Nicholas, just outside Cardiff, Wales. The idea for such a meeting arose in discussions that I had in 1985 and 1986 with many of the principal members of the various groups building prototype laser-interferometric gravitational wave detectors. It became clear that the proposals that these groups were planning to submit for large-scale detectors would have to address questions like the following: • What computing hardware might be required to sift through data corning in at rates of several gigabytes per day for gravitational wave events that might last only a second or less and occur as rarely as once a month? • What software would be required for this task, and how much effort would be required to write it? • Given that every group accepted that a worldwide network of detectors operating in co incidence with one another was required in order to provide both convincing evidence of detections of gravitational waves and sufficient information to determine the amplitude and direction of the waves that had been detected, what sort of problems would the necessary data exchanges raise? Yet most of the effort in these groups had, quite naturally, been concentrated on the detector systems.

Book Workflows for e Science

    Book Details:
  • Author : Ian J. Taylor
  • Publisher : Springer Science & Business Media
  • Release : 2007-12-31
  • ISBN : 184628757X
  • Pages : 532 pages

Download or read book Workflows for e Science written by Ian J. Taylor and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a timely book presenting an overview of the current state-of-the-art within established projects, presenting many different aspects of workflow from users to tool builders. It provides an overview of active research, from a number of different perspectives. It includes theoretical aspects of workflow and deals with workflow for e-Science as opposed to e-Commerce. The topics covered will be of interest to a wide range of practitioners.

Book Nanohertz Gravitational Wave Astronomy

Download or read book Nanohertz Gravitational Wave Astronomy written by Stephen R. Taylor and published by CRC Press. This book was released on 2021-11-23 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanohertz Gravitational Wave Astronomy explores the exciting hunt for low frequency gravitational waves by using the extraordinary timing precision of pulsars. The book takes the reader on a tour across the expansive gravitational-wave landscape, from LIGO detections to the search for polarization patterns in the Cosmic Microwave Background, then hones in on the band of nanohertz frequencies that Pulsar Timing Arrays (PTAs) are sensitive to. Within this band may lie many pairs of the most massive black holes in the entire Universe, all radiating in chorus to produce a background of gravitational waves. The book shows how such extra-Galactic gravitational waves can alter the arrival times of radio pulses emanating from monitored Galactic pulsars, and how we can use the pattern of correlated timing deviations from many pulsars to tease out the elusive signal. The book takes a pragmatic approach to data analysis, explaining how it is performed in practice within classical and Bayesian statistics, as well as the numerous strategies one can use to optimize numerical Bayesian searches in PTA analyses. It closes with a complete discussion of the data model for nanohertz gravitational wave searches, and an overview of the past achievements, present efforts, and future prospects for PTAs. The book is accessible to upper division undergraduate students and graduate students of astronomy, and also serves as a useful desk reference for experts in the field. Key features: Contains a complete derivation of the pulsar timing response to gravitational waves, and the overlap reduction function for PTAs. Presents a comprehensive overview of source astrophysics, and the dynamical influences that shape the gravitational wave signals that PTAs are sensitive to. Serves as a detailed primer on gravitational-wave data analysis and numerical Bayesian techniques for PTAs.

Book Handbook of Gravitational Wave Astronomy

Download or read book Handbook of Gravitational Wave Astronomy written by Cosimo Bambi and published by Springer Nature. This book was released on 2022-07-02 with total page 1895 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides an updated comprehensive description of gravitational wave astronomy. In the first part, it reviews gravitational wave experiments, from ground and space based laser interferometers to pulsar timing arrays and indirect detection from the cosmic microwave background. In the second part, it discusses a number of astrophysical and cosmological gravitational wave sources, including black holes, neutron stars, possible more exotic objects, and sources in the early Universe. The third part of the book reviews the methods to calculate gravitational waveforms. The fourth and last part of the book covers techniques employed in gravitational wave astronomy data analysis. This book represents both a valuable resource for graduate students and an important reference for researchers in gravitational wave astronomy.

Book Gravitational Wave Detection and Data Analysis for Pulsar Timing Arrays

Download or read book Gravitational Wave Detection and Data Analysis for Pulsar Timing Arrays written by Rutger van Haasteren and published by Springer Science & Business Media. This book was released on 2013-09-12 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pulsar timing is a promising method for detecting gravitational waves in the nano-Hertz band. In his prize winning Ph.D. thesis Rutger van Haasteren deals with how one takes thousands of seemingly random timing residuals which are measured by pulsar observers, and extracts information about the presence and character of the gravitational waves in the nano-Hertz band that are washing over our Galaxy. The author presents a sophisticated mathematical algorithm that deals with this issue. His algorithm is probably the most well-developed of those that are currently in use in the Pulsar Timing Array community. In chapter 3, the gravitational-wave memory effect is described. This is one of the first descriptions of this interesting effect in relation with pulsar timing, which may become observable in future Pulsar Timing Array projects. The last part of the work is dedicated to an effort to combine the European pulsar timing data sets in order to search for gravitational waves. This study has placed the most stringent limit to date on the intensity of gravitational waves that are produced by pairs of supermassive black holes dancing around each other in distant galaxies, as well as those that may be produced by vibrating cosmic strings. Rutger van Haasteren has won the 2011 GWIC Thesis Prize of the Gravitational Wave International Community for his innovative work in various directions of the search for gravitational waves by pulsar timing. The work is presented in this Ph.D. thesis.

Book De noising of Gravitational Wave Data

Download or read book De noising of Gravitational Wave Data written by Pablo Barneo and published by BOD GmbH DE. This book was released on 2024-03-11 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first experimental evidence for the existence of gravitational waves in 2015, the amount of data in this scientific area has increased enormously. There has also been a great deal of interest in the scientific community in gravitational waves. The interferometers, used to capture these waves, need to achieve a high level of instrumental sensitivity to be able to detect and analyse the weak signals emitted by both distant sources of intrinsically high intensity and nearby sources of much lower intensity. High sensitivity is often accompanied by high levels of noise that difficult data analysis. In nowadays interferometers, large amounts of data are recorded with a high percentage of noise from which we attempt to extract the possible gravitational waves buried therein. In this dissertation we propose to use a denoising method based on the minimisation of the total variance of the time series that constitute the data. Known as the ROF method, it assumes that the largest contribution to the total variance of a function comes from noise. In this way, a minimisation of this variance should lead to a drastic reduction in the presence of noise. This denoising procedure helps to improve the detection and data quality of gravitational wave analysis. We have implemented two ROF-based denoising algorithms in a commonly used gravitational-wave analysis software package. The analysis package is known as coherent WaveBurst (cWB) and uses the excess energy from the coherence between data from two or more interferometers to find gravitational waves. The denoising methods are the one-step regularised ROF (rROF), and the iterative rROF procedure (irROF). We have tested both methods using events from the gravitational-wave catalogue of the first three observing periods of the LIGO-Virgo-KAGRA scientific collaboration. These events, named GW1501914, GW151226, GW170817 and GW190521, comprise different wave morphologies of compact binary systems injected at different noise quality levels.

Book De noising of Gravitational Wave Data

Download or read book De noising of Gravitational Wave Data written by Pablo Barneo and published by BOD GmbH DE. This book was released on 2024-04-10 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first experimental evidence for the existence of gravitational waves in 2015, the amount of data in this scientific area has increased enormously. There has also been a great deal of interest in the scientific community in gravitational waves. The interferometers, used to capture these waves, need to achieve a high level of instrumental sensitivity to be able to detect and analyse the weak signals emitted by both distant sources of intrinsically high intensity and nearby sources of much lower intensity. High sensitivity is often accompanied by high levels of noise that difficult data analysis. In nowadays interferometers, large amounts of data are recorded with a high percentage of noise from which we attempt to extract the possible gravitational waves buried therein. In this dissertation we propose to use a denoising method based on the minimisation of the total variance of the time series that constitute the data. Known as the ROF method, it assumes that the largest contribution to the total variance of a function comes from noise. In this way, a minimisation of this variance should lead to a drastic reduction in the presence of noise. This denoising procedure helps to improve the detection and data quality of gravitational wave analysis. We have implemented two ROF-based denoising algorithms in a commonly used gravitational-wave analysis software package. The analysis package is known as coherent WaveBurst (cWB) and uses the excess energy from the coherence between data from two or more interferometers to find gravitational waves. The denoising methods are the one-step regularised ROF (rROF), and the iterative rROF procedure (irROF). We have tested both methods using events from the gravitational-wave catalogue of the first three observing periods of the LIGO-Virgo-KAGRA scientific collaboration. These events, named GW1501914, GW151226, GW170817 and GW190521, comprise different wave morphologies of compact binary systems injected at different noise quality levels.

Book Analysis of Gravitational wave Data

Download or read book Analysis of Gravitational wave Data written by Piotr Jaranowski and published by . This book was released on 2009 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in this field has grown considerably in recent years due to the commissioning of a world-wide network of large-scale detectors. This network collects a very large amount of data that is currently being analyzed and interpreted. This book introduces researchers entering the field, and researchers currently analyzing the data, to the field of gravitational-wave data analysis. An ideal starting point for studying the issues related to current gravitational-wave research, the book contains detailed derivations of the basic formulae related to the detectors' responses and maximum-likelihood detection. These derivations are much more complete and more pedagogical than those found in current research papers, and will enable readers to apply general statistical concepts to the analysis of gravitational-wave signals. It also discusses new ideas on devising the efficient algorithms needed to perform data analysis.

Book General Relativity and Gravitational Waves

Download or read book General Relativity and Gravitational Waves written by Sanjeev Dhurandhar and published by Springer Nature. This book was released on 2022-02-16 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as a textbook for senior undergraduate students who are learning the subject of general relativity and gravitational waves for the first time. Both authors have been teaching the course in various forms for a few decades and have designed the book as a one stop book at basic level including derivations and exercises. A spectacular prediction of general relativity is gravitational waves. Gravitational waves were first detected by the LIGO detectors in 2015, hundred years after their prediction. Both authors are part of the LIGO Science Collaboration and were authors on the discovery paper. Therefore, a strong motivation for this book is to provide the essential concepts of general relativity theory and gravitational waves with their modern applications to students and to researchers who are new to the multi-disciplinary field of gravitational wave astronomy. One of the advanced topics covered in this book is the fundamentals of gravitational wave data analysis, filling a gap in textbooks on general relativity. The topic blends smoothly with other chapters in the book not only because of the common area of research, but it uses similar differential geometric and algebraic tools that are used in general relativity.

Book Advanced Gravitational Wave Detectors

Download or read book Advanced Gravitational Wave Detectors written by D. G. Blair and published by Cambridge University Press. This book was released on 2012-02-16 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the technology and reviews the experimental issues; a valuable reference for graduate students and researchers in physics and astrophysics.

Book Gravitational Waves

    Book Details:
  • Author : Michele Maggiore
  • Publisher : Oxford University Press
  • Release : 2008
  • ISBN : 0198570740
  • Pages : 573 pages

Download or read book Gravitational Waves written by Michele Maggiore and published by Oxford University Press. This book was released on 2008 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two volumes of 'Gravitational Waves' provide a comprehensive and detailed account of the physics of gravitational waves. Volume 2 discusses what can be learned from gravitational waves in astrophysics and in cosmology, by systematising a large body of theoretical developments that have taken place over the last decades.

Book The Detection of Gravitational Waves

Download or read book The Detection of Gravitational Waves written by David G. Blair and published by Cambridge University Press. This book was released on 2005-10-13 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the concepts of gravitational waves within the context of general relativity. The sources of gravitational radiation for which there is direct observational evidence and those of a more speculative nature are described. He then gives a general introduction to the methods of detection. In the subsequent chapters he has drawn together the leading scientists in the field to give a comprehensive practical and theoretical account of the physics and technology of gravitational wave detection.

Book Gravitational Waves from Coalescing Binaries

Download or read book Gravitational Waves from Coalescing Binaries written by Stanislav Babak and published by Morgan & Claypool Publishers. This book was released on 2020-04-21 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is to help post-graduate students to get into gravitational wave astronomy. We assume the knowledge of General Relativity theory, though we will concentrate on the physics and often omit mathematically strict derivations. We provide references to already existing literature where possible, this helps us to see a broad picture, skipping the details. The uniqueness of this book is in that it covers three frequency bands and three major world-wide efforts to detect gravitational waves. The LIGO and Virgo scientific collaboration has detected first gravitational waves and the merger of black holes become now almost a routine. We do expect many discoveries yet to come, especially in the joined gravitational and electromagnetic observations. LISA, the space-based gravitational wave observatory, will be launched around 2034 and will be able to detect thousands of GW sources in the milli-Hz band. Pulsar timing array observations have accumulated 20-years' worth of data and we expected detection of GWs in the nano-Hz band within the next decade. We describe the gravitational wave sources and data analysis techniques in each frequency band.

Book First stage LISA Data Processing and Gravitational Wave Data Analysis

Download or read book First stage LISA Data Processing and Gravitational Wave Data Analysis written by Yan Wang and published by Springer. This book was released on 2015-12-10 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis covers a diverse set of topics related to space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). The core of the thesis is devoted to the preprocessing of the interferometric link data for a LISA constellation, specifically developing optimal Kalman filters to reduce arm length noise due to clock noise. The approach is to apply Kalman filters of increasing complexity to make optimal estimates of relevant quantities such as constellation arm length, relative clock drift, and Doppler frequencies based on the available measurement data. Depending on the complexity of the filter and the simulated data, these Kalman filter estimates can provide up to a few orders of magnitude improvement over simpler estimators. While the basic concept of the LISA measurement (Time Delay Interferometry) was worked out some time ago, this work brings a level of rigor to the processing of the constellation-level data products. The thesis concludes with some topics related to the eLISA such as a new class of phenomenological waveforms for extreme mass-ratio inspiral sources (EMRIs, one of the main source for eLISA), an octahedral space-based GW detector that does not require drag-free test masses, and some efficient template-search algorithms for the case of relatively high SNR signals.