Download or read book Graph Powered Analytics and Machine Learning with TigerGraph written by Victor Lee Ph.D and published by "O'Reilly Media, Inc.". This book was released on 2023-07-24 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the rapid rise of graph databases, organizations are now implementing advanced analytics and machine learning solutions to help drive business outcomes. This practical guide shows data scientists, data engineers, architects, and business analysts how to get started with a graph database using TigerGraph, one of the leading graph database models available. You'll explore a three-stage approach to deriving value from connected data: connect, analyze, and learn. Victor Lee, Phuc Kien Nguyen, and Alexander Thomas present real use cases covering several contemporary business needs. By diving into hands-on exercises using TigerGraph Cloud, you'll quickly become proficient at designing and managing advanced analytics and machine learning solutions for your organization. Use graph thinking to connect, analyze, and learn from data for advanced analytics and machine learning Learn how graph analytics and machine learning can deliver key business insights and outcomes Use five core categories of graph algorithms to drive advanced analytics and machine learning Deliver a real-time 360-degree view of core business entities, including customer, product, service, supplier, and citizen Discover insights from connected data through machine learning and advanced analytics
Download or read book Graph Powered Analytics and Machine Learning with TigerGraph written by Victor Lee Ph.D and published by "O'Reilly Media, Inc.". This book was released on 2023-07-24 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the rapid rise of graph databases, organizations are now implementing advanced analytics and machine learning solutions to help drive business outcomes. This practical guide shows data scientists, data engineers, architects, and business analysts how to get started with a graph database using TigerGraph, one of the leading graph database models available. You'll explore a three-stage approach to deriving value from connected data: connect, analyze, and learn. Victor Lee, Phuc Kien Nguyen, and Alexander Thomas present real use cases covering several contemporary business needs. By diving into hands-on exercises using TigerGraph Cloud, you'll quickly become proficient at designing and managing advanced analytics and machine learning solutions for your organization. Use graph thinking to connect, analyze, and learn from data for advanced analytics and machine learning Learn how graph analytics and machine learning can deliver key business insights and outcomes Use five core categories of graph algorithms to drive advanced analytics and machine learning Deliver a real-time 360-degree view of core business entities, including customer, product, service, supplier, and citizen Discover insights from connected data through machine learning and advanced analytics
Download or read book Graph Powered Machine Learning written by Alessandro Negro and published by Simon and Schuster. This book was released on 2021-10-05 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Upgrade your machine learning models with graph-based algorithms, the perfect structure for complex and interlinked data. Summary In Graph-Powered Machine Learning, you will learn: The lifecycle of a machine learning project Graphs in big data platforms Data source modeling using graphs Graph-based natural language processing, recommendations, and fraud detection techniques Graph algorithms Working with Neo4J Graph-Powered Machine Learning teaches to use graph-based algorithms and data organization strategies to develop superior machine learning applications. You’ll dive into the role of graphs in machine learning and big data platforms, and take an in-depth look at data source modeling, algorithm design, recommendations, and fraud detection. Explore end-to-end projects that illustrate architectures and help you optimize with best design practices. Author Alessandro Negro’s extensive experience shines through in every chapter, as you learn from examples and concrete scenarios based on his work with real clients! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications. Graph-based machine learning techniques offer a powerful new perspective for machine learning in social networking, fraud detection, natural language processing, and recommendation systems. About the book Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you’ll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks. What's inside Graphs in big data platforms Recommendations, natural language processing, fraud detection Graph algorithms Working with the Neo4J graph database About the reader For readers comfortable with machine learning basics. About the author Alessandro Negro is Chief Scientist at GraphAware. He has been a speaker at many conferences, and holds a PhD in Computer Science. Table of Contents PART 1 INTRODUCTION 1 Machine learning and graphs: An introduction 2 Graph data engineering 3 Graphs in machine learning applications PART 2 RECOMMENDATIONS 4 Content-based recommendations 5 Collaborative filtering 6 Session-based recommendations 7 Context-aware and hybrid recommendations PART 3 FIGHTING FRAUD 8 Basic approaches to graph-powered fraud detection 9 Proximity-based algorithms 10 Social network analysis against fraud PART 4 TAMING TEXT WITH GRAPHS 11 Graph-based natural language processing 12 Knowledge graphs
Download or read book Introduction to Statistical and Machine Learning Methods for Data Science written by Carlos Andre Reis Pinheiro and published by SAS Institute. This book was released on 2021-08-06 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.
Download or read book Data Science Analytics and Machine Learning with R written by Luiz Paulo Favero and published by Academic Press. This book was released on 2023-01-23 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science, Analytics and Machine Learning with R explains the principles of data mining and machine learning techniques and accentuates the importance of applied and multivariate modeling. The book emphasizes the fundamentals of each technique, with step-by-step codes and real-world examples with data from areas such as medicine and health, biology, engineering, technology and related sciences. Examples use the most recent R language syntax, with recognized robust, widespread and current packages. Code scripts are exhaustively commented, making it clear to readers what happens in each command. For data collection, readers are instructed how to build their own robots from the very beginning. In addition, an entire chapter focuses on the concept of spatial analysis, allowing readers to build their own maps through geo-referenced data (such as in epidemiologic research) and some basic statistical techniques. Other chapters cover ensemble and uplift modeling and GLMM (Generalized Linear Mixed Models) estimations, both linear and nonlinear. - Presents a comprehensive and practical overview of machine learning, data mining and AI techniques for a broad multidisciplinary audience - Serves readers who are interested in statistics, analytics and modeling, and those who wish to deepen their knowledge in programming through the use of R - Teaches readers how to apply machine learning techniques to a wide range of data and subject areas - Presents data in a graphically appealing way, promoting greater information transparency and interactive learning
Download or read book Data Mining for Business Analytics written by Galit Shmueli and published by John Wiley & Sons. This book was released on 2019-10-14 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Download or read book Think Stats written by Allen B. Downey and published by "O'Reilly Media, Inc.". This book was released on 2014-10-16 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. By working with a single case study throughout this thoroughly revised book, you’ll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You’ll explore distributions, rules of probability, visualization, and many other tools and concepts. New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries. Develop an understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Import data from most sources with Python, rather than rely on data that’s cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data
Download or read book Practical Data Science with Hadoop and Spark written by Ofer Mendelevitch and published by Addison-Wesley Professional. This book was released on 2016-12-08 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Complete Guide to Data Science with Hadoop—For Technical Professionals, Businesspeople, and Students Demand is soaring for professionals who can solve real data science problems with Hadoop and Spark. Practical Data Science with Hadoop® and Spark is your complete guide to doing just that. Drawing on immense experience with Hadoop and big data, three leading experts bring together everything you need: high-level concepts, deep-dive techniques, real-world use cases, practical applications, and hands-on tutorials. The authors introduce the essentials of data science and the modern Hadoop ecosystem, explaining how Hadoop and Spark have evolved into an effective platform for solving data science problems at scale. In addition to comprehensive application coverage, the authors also provide useful guidance on the important steps of data ingestion, data munging, and visualization. Once the groundwork is in place, the authors focus on specific applications, including machine learning, predictive modeling for sentiment analysis, clustering for document analysis, anomaly detection, and natural language processing (NLP). This guide provides a strong technical foundation for those who want to do practical data science, and also presents business-driven guidance on how to apply Hadoop and Spark to optimize ROI of data science initiatives. Learn What data science is, how it has evolved, and how to plan a data science career How data volume, variety, and velocity shape data science use cases Hadoop and its ecosystem, including HDFS, MapReduce, YARN, and Spark Data importation with Hive and Spark Data quality, preprocessing, preparation, and modeling Visualization: surfacing insights from huge data sets Machine learning: classification, regression, clustering, and anomaly detection Algorithms and Hadoop tools for predictive modeling Cluster analysis and similarity functions Large-scale anomaly detection NLP: applying data science to human language
Download or read book Machine Learning and Big Data with Kdb q written by Paul A. Bilokon and published by . This book was released on 2019-11-11 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Upgrade your programming language to more effectively handle high-frequency data Machine Learning and Big Data with KDB+/Q offers quants, programmers and algorithmic traders a practical entry into the powerful but non-intuitive kdb+ database and q programming language. Ideally designed to handle the speed and volume of high-frequency financial data at sell- and buy-side institutions, these tools have become the de facto standard; this book provides the foundational knowledge practitioners need to work effectively with this rapidly-evolving approach to analytical trading. The discussion follows the natural progression of working strategy development to allow hands-on learning in a familiar sphere, illustrating the contrast of efficiency and capability between the q language and other programming approaches. Rather than an all-encompassing "bible"-type reference, this book is designed with a focus on real-world practicality to help you quickly get up to speed and become productive with the language. Understand why kdb+/q is the ideal solution for high-frequency data Delve into "meat" of q programming to solve practical economic problems Perform everyday operations including basic regressions, cointegration, volatility estimation, modelling and more Learn advanced techniques from market impact and microstructure analyses to machine learning techniques including neural networks The kdb+ database and its underlying programming language q offer unprecedented speed and capability. As trading algorithms and financial models grow ever more complex against the markets they seek to predict, they encompass an ever-larger swath of data - more variables, more metrics, more responsiveness and altogether more "moving parts." Traditional programming languages are increasingly failing to accommodate the growing speed and volume of data, and lack the necessary flexibility that cutting-edge financial modelling demands. Machine Learning and Big Data with KDB+/Q opens up the technology and flattens the learning curve to help you quickly adopt a more effective set of tools.
Download or read book Graph Data Management written by George Fletcher and published by Springer. This book was released on 2018-10-31 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive overview of fundamental issues and recent advances in graph data management. Its aim is to provide beginning researchers in the area of graph data management, or in fields that require graph data management, an overview of the latest developments in this area, both in applied and in fundamental subdomains. The topics covered range from a general introduction to graph data management, to more specialized topics like graph visualization, flexible queries of graph data, parallel processing, and benchmarking. The book will help researchers put their work in perspective and show them which types of tools, techniques and technologies are available, which ones could best suit their needs, and where there are still open issues and future research directions. The chapters are contributed by leading experts in the relevant areas, presenting a coherent overview of the state of the art in the field. Readers should have a basic knowledge of data management techniques as they are taught in computer science MSc programs.
Download or read book Graph Databases in Action written by Dave Bechberger and published by Manning Publications. This book was released on 2020-11-24 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph Databases in Action introduces you to graph database concepts by comparing them with relational database constructs. You'll learn just enough theory to get started, then progress to hands-on development. Discover use cases involving social networking, recommendation engines, and personalization. Summary Relationships in data often look far more like a web than an orderly set of rows and columns. Graph databases shine when it comes to revealing valuable insights within complex, interconnected data such as demographics, financial records, or computer networks. In Graph Databases in Action, experts Dave Bechberger and Josh Perryman illuminate the design and implementation of graph databases in real-world applications. You'll learn how to choose the right database solutions for your tasks, and how to use your new knowledge to build agile, flexible, and high-performing graph-powered applications! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Isolated data is a thing of the past! Now, data is connected, and graph databases—like Amazon Neptune, Microsoft Cosmos DB, and Neo4j—are the essential tools of this new reality. Graph databases represent relationships naturally, speeding the discovery of insights and driving business value. About the book Graph Databases in Action introduces you to graph database concepts by comparing them with relational database constructs. You'll learn just enough theory to get started, then progress to hands-on development. Discover use cases involving social networking, recommendation engines, and personalization. What's inside Graph databases vs. relational databases Systematic graph data modeling Querying and navigating a graph Graph patterns Pitfalls and antipatterns About the reader For software developers. No experience with graph databases required. About the author Dave Bechberger and Josh Perryman have decades of experience building complex data-driven systems and have worked with graph databases since 2014. Table of Contents PART 1 - GETTING STARTED WITH GRAPH DATABASES 1 Introduction to graphs 2 Graph data modeling 3 Running basic and recursive traversals 4 Pathfinding traversals and mutating graphs 5 Formatting results 6 Developing an application PART 2 - BUILDING ON GRAPH DATABASES 7 Advanced data modeling techniques 8 Building traversals using known walks 9 Working with subgraphs PART 3 - MOVING BEYOND THE BASICS 10 Performance, pitfalls, and anti-patterns 11 What's next: Graph analytics, machine learning, and resources
Download or read book Beginning PL SQL written by Donald Bales and published by Apress. This book was released on 2007-10-18 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning PL/SQL is a fast-paced and blissfully short introduction to Oracle's PL/SQL language. PL/SQL is the built-in language that every Oracle developer and database administrator simply must know. The book shows readers how to apply object-oriented PL/SQL to production applications. No other book on PL/SQL does this. It gives the reader practical advice on what works and what doesn’t, and advises on the performance tradeoffs between doing work in SQL versus in PL/SQL. This book gets readers up-to-speed on the core of the language without wasting time on esoteric and seldom used syntax.
Download or read book Flow Architectures written by James Urquhart and published by "O'Reilly Media, Inc.". This book was released on 2021-01-06 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Software development today is embracing events and streaming data, which optimizes not only how technology interacts but also how businesses integrate with one another to meet customer needs. This phenomenon, called flow, consists of patterns and standards that determine which activity and related data is communicated between parties over the internet. This book explores critical implications of that evolution: What happens when events and data streams help you discover new activity sources to enhance existing businesses or drive new markets? What technologies and architectural patterns can position your company for opportunities enabled by flow? James Urquhart, global field CTO at VMware, guides enterprise architects, software developers, and product managers through the process. Learn the benefits of flow dynamics when businesses, governments, and other institutions integrate via events and data streams Understand the value chain for flow integration through Wardley mapping visualization and promise theory modeling Walk through basic concepts behind today's event-driven systems marketplace Learn how today's integration patterns will influence the real-time events flow in the future Explore why companies should architect and build software today to take advantage of flow in coming years
Download or read book Making Sense of NoSQL written by Ann Kelly and published by Simon and Schuster. This book was released on 2013-09-02 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Making Sense of NoSQL clearly and concisely explains the concepts, features, benefits, potential, and limitations of NoSQL technologies. Using examples and use cases, illustrations, and plain, jargon-free writing, this guide shows how you can effectively assemble a NoSQL solution to replace or augment the traditional RDBMS you have now. About this Book If you want to understand and perhaps start using the new data storage and analysis technologies that go beyond the SQL database model, this book is for you. Written in plain language suitable for technical managers and developers, and using many examples, use cases, and illustrations, this book explains the concepts, features, benefits, potential, and limitations of NoSQL. Making Sense of NoSQL starts by comparing familiar database concepts to the new NoSQL patterns that augment or replace them. Then, you'll explore case studies on big data, search, reliability, and business agility that apply these new patterns to today's business problems. You'll see how NoSQL systems can leverage the resources of modern cloud computing and multiple-CPU data centers. The final chaptersshow you how to choose the right NoSQL technologies for your own needs. Managers and developers will welcome this lucid overview of the potential and capabilities of NoSQL technologies. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. What's Inside NoSQL data architecture patterns NoSQL for big data Search, high availability, and security Choosing an architecture About the Authors Dan McCreary and Ann Kelly lead an independent training and consultancy firm focused on NoSQL solutions and are cofounders of the NoSQL Now! Conference. Table of Contents PART 1 INTRODUCTION NoSQL: It's about making intelligent choices NoSQL concepts PART 2 DATABASE PATTERNS Foundational data architecture patterns NoSQL data architecture patterns Native XML databases PART 3 NOSQL SOLUTIONS Using NoSQL to manage big data Finding information with NoSQL search Building high-availability solutions with NoSQL Increasing agility with NoSQL PART 4 ADVANCED TOPICS NoSQL and functional programming Security: protecting data in your NoSQL systems Selecting the right NoSQL solution
Download or read book Querying Graphs written by Angela Bonifati and published by Springer Nature. This book was released on 2022-06-01 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph data modeling and querying arises in many practical application domains such as social and biological networks where the primary focus is on concepts and their relationships and the rich patterns in these complex webs of interconnectivity. In this book, we present a concise unified view on the basic challenges which arise over the complete life cycle of formulating and processing queries on graph databases. To that purpose, we present all major concepts relevant to this life cycle, formulated in terms of a common and unifying ground: the property graph data model—the pre-dominant data model adopted by modern graph database systems. We aim especially to give a coherent and in-depth perspective on current graph querying and an outlook for future developments. Our presentation is self-contained, covering the relevant topics from: graph data models, graph query languages and graph query specification, graph constraints, and graph query processing. We conclude by indicating major open research challenges towards the next generation of graph data management systems.
Download or read book Financial Signal Processing and Machine Learning written by Ali N. Akansu and published by John Wiley & Sons. This book was released on 2016-04-21 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.
Download or read book Oracle Database 10g Performance Tuning Tips Techniques written by Richard Niemiec and published by McGraw Hill Professional. This book was released on 2007-07-16 with total page 1010 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Offers hundreds of hints, tips, and tricks of the trade that can be useful to any DBA wanting to achieve maximum performance of Oracle applications. No Oracle library would be complete without this book." --Ken (Dr. DBA) Jacobs, Vice President of Product Strategy for Server Technologies, Oracle Corporation "Rich is the first and last stop for Oracle Database technology and performance tuning. His knowledge is a vital tool that you need to successfully negotiate the waters of Oracle database development." --Mike Frey, Principal Architect, Navteq