EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Graph Directed Markov Systems

Download or read book Graph Directed Markov Systems written by R. Daniel Mauldin and published by Cambridge University Press. This book was released on 2003-08-07 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main focus of this book is the exploration of the geometric and dynamic properties of a far reaching generalization of a conformal iterated function system - a Graph Directed Markov System. These systems are very robust in that they apply to many settings that do not fit into the scheme of conformal iterated systems. The basic theory is laid out here and the authors have touched on many natural questions arising in its context. However, they also emphasise the many issues and current research topics which can be found in original papers. For example the detailed analysis of the structure of harmonic measures of limit sets, the examination of the doubling property of conformal measures, the extensive study of generalized polynomial like mapping or multifractal analysis of geometrically finite Kleinian groups. This book leads readers onto frontier research in the field, making it ideal for both established researchers and graduate students.

Book Conformal Graph Directed Markov Systems on Carnot Groups

Download or read book Conformal Graph Directed Markov Systems on Carnot Groups written by Vasileios Chousionis and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a sub-Riemannian metric. In particular, they develop the thermodynamic formalism and show that, under natural hypotheses, the limit set of an Carnot conformal GDMS has Hausdorff dimension given by Bowen's parameter. They illustrate their results for a variety of examples of both linear and nonlinear iterated function systems and graph directed Markov systems in such sub-Riemannian spaces. These include the Heisenberg continued fractions introduced by Lukyanenko and Vandehey as well as Kleinian and Schottky groups associated to the non-real classical rank one hyperbolic spaces.

Book Open Conformal Systems and Perturbations of Transfer Operators

Download or read book Open Conformal Systems and Perturbations of Transfer Operators written by Mark Pollicott and published by Springer. This book was released on 2018-02-05 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this book is on open conformal dynamical systems corresponding to the escape of a point through an open Euclidean ball. The ultimate goal is to understand the asymptotic behavior of the escape rate as the radius of the ball tends to zero. In the case of hyperbolic conformal systems this has been addressed by various authors. The conformal maps considered in this book are far more general, and the analysis correspondingly more involved. The asymptotic existence of escape rates is proved and they are calculated in the context of (finite or infinite) countable alphabets, uniformly contracting conformal graph-directed Markov systems, and in particular, conformal countable alphabet iterated function systems. These results have direct applications to interval maps, rational functions and meromorphic maps. Towards this goal the authors develop, on a purely symbolic level, a theory of singular perturbations of Perron--Frobenius (transfer) operators associated with countable alphabet subshifts of finite type and Hölder continuous summable potentials. This leads to a fairly full account of the structure of the corresponding open dynamical systems and their associated surviving sets.

Book Asymptotic Counting in Conformal Dynamical Systems

Download or read book Asymptotic Counting in Conformal Dynamical Systems written by Mark Pollicott and published by American Mathematical Society. This book was released on 2021-09-24 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.

Book Meromorphic Dynamics  Volume 1

Download or read book Meromorphic Dynamics Volume 1 written by Janina Kotus and published by Cambridge University Press. This book was released on 2023-02-28 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text, the first of two volumes, provides a comprehensive and self-contained introduction to a wide range of fundamental results from ergodic theory and geometric measure theory. Topics covered include: finite and infinite abstract ergodic theory, Young's towers, measure-theoretic Kolmogorov-Sinai entropy, thermodynamics formalism, geometric function theory, various kinds of conformal measures, conformal graph directed Markov systems and iterated functions systems, semi-local dynamics of analytic functions, and nice sets. Many examples are included, along with detailed explanations of essential concepts and full proofs, in what is sure to be an indispensable reference for both researchers and graduate students.

Book Meromorphic Dynamics

    Book Details:
  • Author : Janina Kotus
  • Publisher : Cambridge University Press
  • Release : 2023-01-31
  • ISBN : 1009215914
  • Pages : 509 pages

Download or read book Meromorphic Dynamics written by Janina Kotus and published by Cambridge University Press. This book was released on 2023-01-31 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and detailed presentation of finite and infinite ergodic theory, fractal measures, and thermodynamic formalism.

Book Graph Directed Markov Systems

Download or read book Graph Directed Markov Systems written by R. Daniel Mauldin and published by . This book was released on 2003 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph Directed Markov Systems are a powerful tool with many application areas, including dynamical systems. This text, by acknowledged experts in the field, includes the necessary background material as well as an extensive list of references suggesting further reading.

Book Distance Expanding Random Mappings  Thermodynamical Formalism  Gibbs Measures and Fractal Geometry

Download or read book Distance Expanding Random Mappings Thermodynamical Formalism Gibbs Measures and Fractal Geometry written by Volker Mayer and published by Springer. This book was released on 2011-10-25 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of random dynamical systems originated from stochastic differential equations. It is intended to provide a framework and techniques to describe and analyze the evolution of dynamical systems when the input and output data are known only approximately, according to some probability distribution. The development of this field, in both the theory and applications, has gone in many directions. In this manuscript we introduce measurable expanding random dynamical systems, develop the thermodynamical formalism and establish, in particular, the exponential decay of correlations and analyticity of the expected pressure although the spectral gap property does not hold. This theory is then used to investigate fractal properties of conformal random systems. We prove a Bowen’s formula and develop the multifractal formalism of the Gibbs states. Depending on the behavior of the Birkhoff sums of the pressure function we arrive at a natural classification of the systems into two classes: quasi-deterministic systems, which share many properties of deterministic ones; and essentially random systems, which are rather generic and never bi-Lipschitz equivalent to deterministic systems. We show that in the essentially random case the Hausdorff measure vanishes, which refutes a conjecture by Bogenschutz and Ochs. Lastly, we present applications of our results to various specific conformal random systems and positively answer a question posed by Bruck and Buger concerning the Hausdorff dimension of quadratic random Julia sets.

Book Ergodic Theory     Finite and Infinite  Thermodynamic Formalism  Symbolic Dynamics and Distance Expanding Maps

Download or read book Ergodic Theory Finite and Infinite Thermodynamic Formalism Symbolic Dynamics and Distance Expanding Maps written by Mariusz Urbański and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-11-22 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen’s formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub’s expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.

Book Meromorphic Dynamics  Volume 2

Download or read book Meromorphic Dynamics Volume 2 written by Janina Kotus and published by Cambridge University Press. This book was released on 2023-02-28 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text, the second of two volumes, builds on the foundational material on ergodic theory and geometric measure theory provided in Volume I, and applies all the techniques discussed to describe the beautiful and rich dynamics of elliptic functions. The text begins with an introduction to topological dynamics of transcendental meromorphic functions, before progressing to elliptic functions, discussing at length their classical properties, measurable dynamics and fractal geometry. The authors then look in depth at compactly non-recurrent elliptic functions. Much of this material is appearing for the first time in book or paper form. Both senior and junior researchers working in ergodic theory and dynamical systems will appreciate what is sure to be an indispensable reference.

Book Graph Directed Markov Systems

Download or read book Graph Directed Markov Systems written by R. Daniel Mauldin and published by . This book was released on 2014-05-14 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monograph on Graph Directed Markov Systems with backgound and research level material.

Book Finer Thermodynamic Formalism     Distance Expanding Maps and Countable State Subshifts of Finite Type  Conformal GDMSs  Lasota Yorke Maps and Fractal Geometry

Download or read book Finer Thermodynamic Formalism Distance Expanding Maps and Countable State Subshifts of Finite Type Conformal GDMSs Lasota Yorke Maps and Fractal Geometry written by Mariusz Urbański and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-05-23 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen’s formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub’s expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.

Book Analytic Endomorphisms of the Riemann Sphere

Download or read book Analytic Endomorphisms of the Riemann Sphere written by Mariusz Urbański and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-09-04 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Recent Trends in Ergodic Theory and Dynamical Systems

Download or read book Recent Trends in Ergodic Theory and Dynamical Systems written by Siddhartha Bhattacharya and published by American Mathematical Soc.. This book was released on 2015-01-26 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the International Conference on Recent Trends in Ergodic Theory and Dynamical Systems, in honor of S. G. Dani's 65th Birthday, held December 26-29, 2012, in Vadodara, India. This volume covers many topics of ergodic theory, dynamical systems, number theory and probability measures on groups. Included are papers on Teichmüller dynamics, Diophantine approximation, iterated function systems, random walks and algebraic dynamical systems, as well as two surveys on the work of S. G. Dani.

Book American journal of mathematics

Download or read book American journal of mathematics written by and published by . This book was released on 2007 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Business Dynamics in the 21st Century

Download or read book Business Dynamics in the 21st Century written by Chee Heong Quah and published by BoD – Books on Demand. This book was released on 2012-05-23 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this 21st century of opportunity and turbulence, business firms need to equip themselves with new competencies that were never thought of before. For this reason, this book is timely as it introduces new insights into new problems in the aspects of performance and quality improvement, networking and logistics in the interconnected world, as well as developments in monetary and financial environment surrounding private enterprises today. Readers shall find that reading this book is an enlightening and pleasant experience, as the discussions are delivered in a clear, straightforward, and "no-frills" manner - suitable to academics and practitioners. If desired, the book can serve as an additional piece of reference for teaching and research in business and economics.

Book Fractal Geometry

    Book Details:
  • Author : Kenneth Falconer
  • Publisher : John Wiley & Sons
  • Release : 2014-02-03
  • ISBN : 111994239X
  • Pages : 404 pages

Download or read book Fractal Geometry written by Kenneth Falconer and published by John Wiley & Sons. This book was released on 2014-02-03 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. The book introduces and develops the general theory and applications of fractals in a way that is accessible to students and researchers from a wide range of disciplines. Fractal Geometry: Mathematical Foundations and Applications is an excellent course book for undergraduate and graduate students studying fractal geometry, with suggestions for material appropriate for a first course indicated. The book also provides an invaluable foundation and reference for researchers who encounter fractals not only in mathematics but also in other areas across physics, engineering and the applied sciences. Provides a comprehensive and accessible introduction to the mathematical theory and applications of fractals Carefully explains each topic using illustrative examples and diagrams Includes the necessary mathematical background material, along with notes and references to enable the reader to pursue individual topics Features a wide range of exercises, enabling readers to consolidate their understanding Supported by a website with solutions to exercises and additional material www.wileyeurope.com/fractal Leads onto the more advanced sequel Techniques in Fractal Geometry (also by Kenneth Falconer and available from Wiley)