Download or read book Data Science on the Google Cloud Platform written by Valliappa Lakshmanan and published by "O'Reilly Media, Inc.". This book was released on 2017-12-12 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines
Download or read book AWS Certified Cloud Developer Associate written by Cybellium and published by Cybellium . This book was released on 2024-10-26 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
Download or read book Machine Learning in the Cloud Comparing Google Cloud AWS and Azure APIs written by Peter Jones and published by Walzone Press. This book was released on 2024-10-13 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the full potential of machine learning with "Machine Learning in the Cloud: Comparing Google Cloud, AWS, and Azure APIs." This essential guide meticulously navigates through the intricate world of cloud-based ML APIs across the leading platforms—Google Cloud, AWS, and Azure. Whether you're a software developer, data scientist, IT professional, or business strategist, this book equips you with the knowledge to make informed decisions about implementing and managing these powerful tools in your projects. Dive deep into a comprehensive analysis and comparison of text processing, image recognition, speech recognition, and custom model building services offered by these giants. Understand the ins and outs of setting up, configuring, and optimizing these APIs for performance and scalability. Explore chapters dedicated to security, compliance, and real-life success stories that demonstrate the transformative impact of cloud-based ML across various industries. With practical guides, strategic insights, and current industry standards, this book is your roadmap to mastering cloud machine learning APIs, paving the way for innovative solutions that enhance competitiveness and efficiency. Embrace the future of artificial intelligence with this expertly crafted resource at your fingertips.
Download or read book Official Google Cloud Certified Professional Data Engineer Study Guide written by Dan Sullivan and published by John Wiley & Sons. This book was released on 2020-06-10 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proven Study Guide that prepares you for this new Google Cloud exam The Google Cloud Certified Professional Data Engineer Study Guide, provides everything you need to prepare for this important exam and master the skills necessary to land that coveted Google Cloud Professional Data Engineer certification. Beginning with a pre-book assessment quiz to evaluate what you know before you begin, each chapter features exam objectives and review questions, plus the online learning environment includes additional complete practice tests. Written by Dan Sullivan, a popular and experienced online course author for machine learning, big data, and Cloud topics, Google Cloud Certified Professional Data Engineer Study Guide is your ace in the hole for deploying and managing analytics and machine learning applications. Build and operationalize storage systems, pipelines, and compute infrastructure Understand machine learning models and learn how to select pre-built models Monitor and troubleshoot machine learning models Design analytics and machine learning applications that are secure, scalable, and highly available. This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform.
Download or read book Google Cloud Developer Certification written by and published by Cybellium . This book was released on 2024-10-26 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
Download or read book Deep Learning Models on Cloud Platforms written by Vijay Ramamoorthi and published by RK Publication. This book was released on 2024-07-25 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning Models on Cloud Platforms provides an in-depth exploration of the integration of deep learning techniques with cloud computing environments. Architectures, and frameworks for developing and deploying deep learning models at scale. It addresses practical considerations, including data management, computational resources, and cost-efficiency, while highlighting popular cloud platforms like AWS, Google Cloud, and Azure. Through real-world examples and case studies, readers will gain insights into best practices for leveraging cloud infrastructure to enhance deep learning capabilities and drive innovation across various industries.
Download or read book Google Cloud AI and Machine Learning Certification written by and published by Cybellium . This book was released on 2024-10-26 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
Download or read book Learning Google Cloud Vertex AI written by Hemanth Kumar K and published by BPB Publications. This book was released on 2023-08-28 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to build an end-to-end data to AI solution on Google Cloud using Vertex AI KEY FEATURES ● Harness the power of AutoML capabilities to build machine learning models. ● Learn how to train custom machine learning models on the Google Cloud Platform. ● Accelerate your career in data analytics by leveraging the capabilities of GCP. DESCRIPTION Google Cloud Vertex AI is a platform for machine learning (ML) offered by Google Cloud, with the objective of making the creation, deployment, and administration of ML models on a large scale easier. If you are seeking a unified and collaborative environment for your ML projects, this book is a valuable resource for you. This comprehensive guide is designed to help data enthusiasts effectively utilize Google Cloud Platform's Vertex AI for a wide range of machine learning operations. It covers the basics of the Google Cloud Platform, encompassing cloud storage, big query, and IAM. Subsequently, it delves into the specifics of Vertex AI, including AutoML, custom model training, model deployment on endpoints, development of Vertex AI pipelines, and the Explainable AI feature store. By the time you finish reading this book, you will be able to navigate Vertex AI proficiently, even if you lack prior experience with cloud platforms. With the inclusion of numerous code examples throughout the book, you will be equipped with the necessary skills and confidence to create machine learning solutions using Vertex AI. WHAT YOU WILL LEARN ● Learn how to create projects, store data in GCP, and manage access permissions effectively. ● Discover how AutoML can be utilized for streamlining workflows. ● Learn how to construct pipelines using TFX (TensorFlow Extended) and Kubeflow components. ● Gain an overview of the purpose and significance of the Feature Store. ● Explore the concept of explainable AI and its role in understanding machine learning models. WHO THIS BOOK IS FOR This book is designed for data scientists and advanced AI practitioners who are interested in learning how to perform machine learning tasks on the Google Cloud Platform. Having prior knowledge of machine learning concepts and proficiency in Python programming would greatly benefit readers. TABLE OF CONTENTS 1. Basics of Google Cloud Platform 2. Introduction to Vertex AI and AutoML Tabular 3. AutoML Image, Text, and Pre-built Models 4. Vertex AI Workbench and Custom Model Training 5. Vertex AI Custom Model Hyperparameter and Deployment 6. Introduction to Pipelines and Kubeflow 7. Pipelines using Kubeflow for Custom Models 8. Pipelines using TensorFlow Extended 9. Vertex AI Feature Store 10. Explainable AI
Download or read book Essential Guide to LLMOps written by RYAN. DOAN and published by Packt Publishing Ltd. This book was released on 2024-07-31 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the secrets to mastering LLMOps with innovative approaches to streamline AI workflows, improve model efficiency, and ensure robust scalability, revolutionizing your language model operations from start to finish Key Features Gain a comprehensive understanding of LLMOps, from data handling to model governance Leverage tools for efficient LLM lifecycle management, from development to maintenance Discover real-world examples of industry cutting-edge trends in generative AI operation Purchase of the print or Kindle book includes a free PDF eBook Book Description The rapid advancements in large language models (LLMs) bring significant challenges in deployment, maintenance, and scalability. This Essential Guide to LLMOps provides practical solutions and strategies to overcome these challenges, ensuring seamless integration and the optimization of LLMs in real-world applications. This book takes you through the historical background, core concepts, and essential tools for data analysis, model development, deployment, maintenance, and governance. You’ll learn how to streamline workflows, enhance efficiency in LLMOps processes, employ LLMOps tools for precise model fine-tuning, and address the critical aspects of model review and governance. You’ll also get to grips with the practices and performance considerations that are necessary for the responsible development and deployment of LLMs. The book equips you with insights into model inference, scalability, and continuous improvement, and shows you how to implement these in real-world applications. By the end of this book, you’ll have learned the nuances of LLMOps, including effective deployment strategies, scalability solutions, and continuous improvement techniques, equipping you to stay ahead in the dynamic world of AI. What you will learn Understand the evolution and impact of LLMs in AI Differentiate between LLMOps and traditional MLOps Utilize LLMOps tools for data analysis, preparation, and fine-tuning Master strategies for model development, deployment, and improvement Implement techniques for model inference, serving, and scalability Integrate human-in-the-loop strategies for refining LLM outputs Grasp the forefront of emerging technologies and practices in LLMOps Who this book is for This book is for machine learning professionals, data scientists, ML engineers, and AI leaders interested in LLMOps. It is particularly valuable for those developing, deploying, and managing LLMs, as well as academics and students looking to deepen their understanding of the latest AI and machine learning trends. Professionals in tech companies and research institutions, as well as anyone with foundational knowledge of machine learning will find this resource invaluable for advancing their skills in LLMOps.
Download or read book Architecting Data and Machine Learning Platforms written by Marco Tranquillin and published by "O'Reilly Media, Inc.". This book was released on 2023-10-12 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: All cloud architects need to know how to build data platforms that enable businesses to make data-driven decisions and deliver enterprise-wide intelligence in a fast and efficient way. This handbook shows you how to design, build, and modernize cloud native data and machine learning platforms using AWS, Azure, Google Cloud, and multicloud tools like Snowflake and Databricks. Authors Marco Tranquillin, Valliappa Lakshmanan, and Firat Tekiner cover the entire data lifecycle from ingestion to activation in a cloud environment using real-world enterprise architectures. You'll learn how to transform, secure, and modernize familiar solutions like data warehouses and data lakes, and you'll be able to leverage recent AI/ML patterns to get accurate and quicker insights to drive competitive advantage. You'll learn how to: Design a modern and secure cloud native or hybrid data analytics and machine learning platform Accelerate data-led innovation by consolidating enterprise data in a governed, scalable, and resilient data platform Democratize access to enterprise data and govern how business teams extract insights and build AI/ML capabilities Enable your business to make decisions in real time using streaming pipelines Build an MLOps platform to move to a predictive and prescriptive analytics approach
Download or read book Human Centered Approaches in Industry 5 0 Human Machine Interaction Virtual Reality Training and Customer Sentiment Analysis written by Hassan, Ahdi and published by IGI Global. This book was released on 2024-01-16 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rapid digital transformation is forcing the manufacturing industry to drastically alter its current trajectory for future success. The remarkable convergence of digitalization and manufacturing is reshaping industries, ushering in an era known as Industry 5.0. This revolutionary transition has given birth to digital manufacturing and smart factories, heralding a new dawn in the way we produce goods. The amalgamation of artificial intelligence (AI), robotics, the internet of things (IoT), augmented reality (AR), virtual reality (VR), big data analytics, cloud computing, and additive manufacturing stands poised to unlock unprecedented avenues in the realm of production. Practitioners, researchers, dreamers, and pioneers all are beckoned to explore the uncharted territories of digital innovation in manufacturing. Human-Centered Approaches in Industry 5.0: Human-Machine Interaction, Virtual Reality Training, and Customer Sentiment Analysis spans domains from mechanical and electrical engineering to computer science, from industrial economics to business strategy, and this book addresses this diverse audience. The book embarks on a comprehensive voyage, unveiling the latest evolutions and nascent trends within digital manufacturing and smart factories. From inception to execution, from design optimization to predictive maintenance, every phase of the manufacturing lifecycle is scrutinized through the lens of cutting-edge technologies. Rather than relying exclusively on the theoretical realm, this book also ventures into the crucible of real-world application, offering practical insights drawn from varied industries, including automotive, aerospace, and pharmaceuticals.
Download or read book Google Certification Guide Google Professional Machine Learning Engineer written by Cybellium Ltd and published by Cybellium Ltd. This book was released on with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Google Certification Guide - Google Professional Machine Learning Engineer Unlock the World of Machine Learning on Google Cloud Embark on a transformative journey to become a Google Professional Machine Learning Engineer with this comprehensive guide. Designed for those who aspire to master the application of machine learning techniques and tools in the Google Cloud environment, this book is an essential resource for professionals seeking to harness the power of ML in their projects and workflows. What Awaits Inside: Advanced ML Concepts and Practices: Dive deep into the world of machine learning on Google Cloud, covering services like AI Platform, TensorFlow, and BigQuery ML. Real-World Applications: Learn through practical scenarios and hands-on examples, illustrating the effective implementation of machine learning models and solutions on Google Cloud. Strategic Exam Preparation: Gain crucial insights into the certification exam's structure and content, complemented by comprehensive practice questions and preparation strategies. Cutting-Edge ML Trends: Stay updated with the latest advancements in Google Cloud machine learning technologies, ensuring your skills remain relevant and innovative. Authored by a Machine Learning Expert Written by an experienced practitioner in the field of machine learning on Google Cloud, this guide bridges the gap between theoretical knowledge and practical application, offering a rich and comprehensive learning experience. Your Comprehensive Guide to ML Certification Whether you’re an experienced machine learning engineer or looking to elevate your expertise in Google Cloud's ML offerings, this book is a valuable companion, guiding you through the intricacies of machine learning in Google Cloud and preparing you for the Professional Machine Learning Engineer certification. Elevate Your Machine Learning Journey This guide is more than a pathway to certification; it's a deep dive into the practical and innovative aspects of machine learning in the Google Cloud environment, designed to equip you with the skills and knowledge for a thriving career in this dynamic field. Begin Your Machine Learning Adventure Start your journey to becoming a certified Google Professional Machine Learning Engineer. This guide is not just about passing an exam; it's about unlocking new opportunities and frontiers in the exciting world of machine learning on Google Cloud. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com
Download or read book Building Machine Learning and Deep Learning Models on Google Cloud Platform written by Ekaba Bisong and published by Apress. This book was released on 2019-09-27 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. What You’ll Learn Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your resultsKnow the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products Who This Book Is For Beginners to the practice of data science and applied machine learning, data scientists at all levels, machine learning engineers, Google Cloud Platform data engineers/architects, and software developers
Download or read book Foundations of Data Science written by Dr. M. Muthamizh Selvam and published by RK Publication. This book was released on 2024-09-05 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Data Science is a comprehensive guide that introduces key concepts and techniques essential for understanding and analyzing data in the modern world. Foundational topics like statistics, probability, linear algebra, and machine learning, offering practical insights and applications in real-world data science. With a focus on both theory and implementation, it is designed for students and professionals seeking to build a solid grounding in data science principles and develop skills in data-driven problem-solving, analysis, and predictive modeling across diverse domains.
Download or read book Google Cloud Platform for Data Engineering written by Alasdair Gilchrist and published by Alasdair Gilchrist. This book was released on with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Google Cloud Platform for Data Engineering is designed to take the beginner through a journey to become a competent and certified GCP data engineer. The book, therefore, is split into three parts; the first part covers fundamental concepts of data engineering and data analysis from a platform and technology-neutral perspective. Reading part 1 will bring a beginner up to speed with the generic concepts, terms and technologies we use in data engineering. The second part, which is a high-level but comprehensive introduction to all the concepts, components, tools and services available to us within the Google Cloud Platform. Completing this section will provide the beginner to GCP and data engineering with a solid foundation on the architecture and capabilities of the GCP. Part 3, however, is where we delve into the moderate to advanced techniques that data engineers need to know and be able to carry out. By this time the raw beginner you started the journey at the beginning of part 1 will be a knowledgable albeit inexperienced data engineer. However, by the conclusion of part 3, they will have gained the advanced knowledge of data engineering techniques and practices on the GCP to pass not only the certification exam but also most interviews and practical tests with confidence. In short part 3, will provide the prospective data engineer with detailed knowledge on setting up and configuring DataProc - GCPs version of the Spark/Hadoop ecosystem for big data. They will also learn how to build and test streaming and batch data pipelines using pub/sub/ dataFlow and BigQuery. Furthermore, they will learn how to integrate all the ML and AI Platform components and APIs. They will be accomplished in connecting data analysis and visualisation tools such as Datalab, DataStudio and AI notebooks amongst others. They will also by now know how to build and train a TensorFlow DNN using APIs and Keras and optimise it to run large public data sets. Also, they will know how to provision and use Kubeflow and Kube Pipelines within Google Kubernetes engines to run container workloads as well as how to take advantage of serverless technologies such as Cloud Run and Cloud Functions to build transparent and seamless data processing platforms. The best part of the book though is its compartmental design which means that anyone from a beginner to an intermediate can join the book at whatever point they feel comfortable.
Download or read book Google Cloud Professional Data Engineer written by and published by Cybellium . This book was released on 2024-10-26 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
Download or read book TensorFlow For Dummies written by Matthew Scarpino and published by John Wiley & Sons. This book was released on 2018-03-07 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become a machine learning pro! Google TensorFlow has become the darling of financial firms and research organizations, but the technology can be intimidating and the learning curve is steep. Luckily, TensorFlow For Dummies is here to offer you a friendly, easy-to-follow book on the subject. Inside, you’ll find out how to write applications with TensorFlow, while also grasping the concepts underlying machine learning—all without ever losing your cool! Machine learning has become ubiquitous in modern society, and its applications include language translation, robotics, handwriting analysis, financial prediction, and image recognition. TensorFlow is Google's preeminent toolset for machine learning, and this hands-on guide makes it easy to understand, even for those without a background in artificial intelligence. Install TensorFlow on your computer Learn the fundamentals of statistical regression and neural networks Visualize the machine learning process with TensorBoard Perform image recognition with convolutional neural networks (CNNs) Analyze sequential data with recurrent neural networks (RNNs) Execute TensorFlow on mobile devices and the Google Cloud Platform (GCP) If you’re a manager or software developer looking to use TensorFlow for machine learning, this is the book you’ll want to have close by.