EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Godunov Methods

    Book Details:
  • Author : E.F. Toro
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461506638
  • Pages : 1050 pages

Download or read book Godunov Methods written by E.F. Toro and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1050 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited review book on Godunov methods contains 97 articles, all of which were presented at the international conference on Godunov Methods: Theory and Applications, held at Oxford in October 1999, to commemo rate the 70th birthday of the Russian mathematician Sergei K. Godunov. The meeting enjoyed the participation of 140 scientists from 20 countries; one of the participants commented: everyone is here, meaning that virtu ally everybody who had made a significant contribution to the general area of numerical methods for hyperbolic conservation laws, along the lines first proposed by Godunov in the fifties, was present at the meeting. Sadly, there were important absentees, who due to personal circumstance could not at tend this very exciting gathering. The central theme o{ the meeting, and of this book, was numerical methods for hyperbolic conservation laws fol lowing Godunov's key ideas contained in his celebrated paper of 1959. But Godunov's contributions to science are not restricted to Godunov's method.

Book Shock Capturing Methods for Free Surface Shallow Flows

Download or read book Shock Capturing Methods for Free Surface Shallow Flows written by E. F. Toro and published by . This book was released on 2001-03-30 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of its kind in the field, this title examines the use of modern, shock-capturing finite volume numerical methods, in the solution of partial differential equations associated with free-surface flows, which satisfy the shallow-water type assumption (including shallow water flows, dense gases and mixtures of materials as special samples). Starting with a general presentation of the governing equations for free-surface shallow flows and a discussion of their physical applicability, the book goes on to analyse the mathematical properties of the equations, in preparation for the presentation of the exact solution of the Riemann problem for wet and dry beds. After a general introduction to the finite volume approach, several chapters are then devoted to describing a variety of modern shock-capturing finite volume numerical methods, including Godunov methods of the upwind and centred type. Approximate Riemann solvers following various approaches are studied in detail as is their use in the Godunov approach for constructing low and high-order upwind TVD methods. Centred TVD schemes are also presented. Two chapters are then devoted to practical applications. The book finishes with an overview of potential practical applications of the methods studied, along with appropriate reference to sources of further information. Features include: * Algorithmic and practical presentation of the methods * Practical applications such as dam-break modelling and the study of bore reflection patterns in two space dimensions * Sample computer programs and accompanying numerical software (details available at www.numeritek.com) The book is suitable for teaching postgraduate students of civil, mechanical, hydraulic and environmental engineering, meteorology, oceanography, fluid mechanics and applied mathematics. Selected portions of the material may also be useful in teaching final year undergraduate students in the above disciplines. The contents will also be of interest to research scientists and engineers in academia and research and consultancy laboratories.

Book Finite Volume Methods for Hyperbolic Problems

Download or read book Finite Volume Methods for Hyperbolic Problems written by Randall J. LeVeque and published by Cambridge University Press. This book was released on 2002-08-26 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.

Book High Resolution Schemes for Hyperbolic Conservation Laws

Download or read book High Resolution Schemes for Hyperbolic Conservation Laws written by A Harten and published by Franklin Classics. This book was released on 2018-10-15 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Book Additive Operator Difference Schemes

Download or read book Additive Operator Difference Schemes written by Petr N. Vabishchevich and published by Walter de Gruyter. This book was released on 2013-11-27 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied mathematical modeling is concerned with solving unsteady problems. Splitting schemes are attributed to the transition from a complex problem to a chain of simpler problems. This book shows how to construct additive difference schemes (splitting schemes) to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods) and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for systems of equations. The book is written for specialists in computational mathematics and mathematical modeling. All topics are presented in a clear and accessible manner.

Book Numerical Methods for Conservation Laws

Download or read book Numerical Methods for Conservation Laws written by LEVEQUE and published by Birkhäuser. This book was released on 2013-11-11 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

Book Numerical Approximation of Hyperbolic Systems of Conservation Laws

Download or read book Numerical Approximation of Hyperbolic Systems of Conservation Laws written by Edwige Godlewski and published by Springer Nature. This book was released on 2021-08-28 with total page 846 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.

Book Riemann Problems and Jupyter Solutions

Download or read book Riemann Problems and Jupyter Solutions written by David I. Ketcheson and published by SIAM. This book was released on 2020-06-26 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses an important class of mathematical problems (the Riemann problem) for first-order hyperbolic partial differential equations (PDEs), which arise when modeling wave propagation in applications such as fluid dynamics, traffic flow, acoustics, and elasticity. The solution of the Riemann problem captures essential information about these models and is the key ingredient in modern numerical methods for their solution. This book covers the fundamental ideas related to classical Riemann solutions, including their special structure and the types of waves that arise, as well as the ideas behind fast approximate solvers for the Riemann problem. The emphasis is on the general ideas, but each chapter delves into a particular application. Riemann Problems and Jupyter Solutions is available in electronic form as a collection of Jupyter notebooks that contain executable computer code and interactive figures and animations, allowing readers to grasp how the concepts presented are affected by important parameters and to experiment by varying those parameters themselves. The only interactive book focused entirely on the Riemann problem, it develops each concept in the context of a specific physical application, helping readers apply physical intuition in learning mathematical concepts. Graduate students and researchers working in the analysis and/or numerical solution of hyperbolic PDEs will find this book of interest. This includes mathematicians, as well as scientists and engineers, working on wave propagation problems. Educators interested in developing instructional materials using Jupyter notebooks will also find this book useful. The book is appropriate for courses in Numerical Methods for Hyperbolic PDEs and Analysis of Hyperbolic PDEs, and it can be a great supplement for courses in computational fluid dynamics, acoustics, and gas dynamics.

Book Hyperbolic Systems of Conservation Laws

Download or read book Hyperbolic Systems of Conservation Laws written by Philippe G. LeFloch and published by Springer Science & Business Media. This book was released on 2002-07-01 with total page 1010 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. It covers the existence, uniqueness, and continuous dependence of classical entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The systems of partial differential equations under consideration arise in many areas of continuum physics.

Book Solving Hyperbolic Equations with Finite Volume Methods

Download or read book Solving Hyperbolic Equations with Finite Volume Methods written by M. Elena Vázquez-Cendón and published by Springer. This book was released on 2015-04-16 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite volume methods are used in numerous applications and by a broad multidisciplinary scientific community. The book communicates this important tool to students, researchers in training and academics involved in the training of students in different science and technology fields. The selection of content is based on the author’s experience giving PhD and master courses in different universities. In the book the introduction of new concepts and numerical methods go together with simple exercises, examples and applications that contribute to reinforce them. In addition, some of them involve the execution of MATLAB codes. The author promotes an understanding of common terminology with a balance between mathematical rigor and physical intuition that characterizes the origin of the methods. This book aims to be a first contact with finite volume methods. Once readers have studied it, they will be able to follow more specific bibliographical references and use commercial programs or open source software within the framework of Computational Fluid Dynamics (CFD).

Book Mathematical Aspects of Numerical Solution of Hyperbolic Systems

Download or read book Mathematical Aspects of Numerical Solution of Hyperbolic Systems written by A.G. Kulikovskii and published by CRC Press. This book was released on 2000-12-21 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena. The authors also address a number of original "nonclassical" problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice. This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.

Book Nonlinear Dynamics of Rotating Shallow Water  Methods and Advances

Download or read book Nonlinear Dynamics of Rotating Shallow Water Methods and Advances written by and published by Elsevier. This book was released on 2007-04-03 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wave emission, the role of essentially nonlinear wave phenomena. The specificity of the book is that analytical, numerical, and experimental approaches are presented together and complement each other. Special attention is paid on explaining the methodology, e.g. multiple time-scale asymptotic expansions, averaging and removal of resonances, in what concerns theory, high-resolution finite-volume schemes, in what concerns numerical simulations, and turntable experiments with stratified fluids, in what concerns laboratory simulations. A general introduction into GFD is given at the beginning to introduce the problematics for non-specialists. At the same time, recent new results on nonlinear geostrophic adjustment, nonlinear waves, and equatorial dynamics, including some exact results on the existence of the slow manifold, wave breaking, and nonlinear wave solutions are presented for the first time in a systematic manner.· Incorporates analytical, numerical and experimental approaches in the geophysical fluid dynamics context· Combination of essentials in GFD, of the description of analytical, numerical and experimental methods (tutorial part), and new results obtained by these methods (original part)· Provides the link between GFD and mechanics (averaging method, the method of normal forms); GFD and nonlinear physics (shocks, solitons, modons, anomalous transport, periodic nonlinear waves)

Book Riemann Solvers and Numerical Methods for Fluid Dynamics

Download or read book Riemann Solvers and Numerical Methods for Fluid Dynamics written by Eleuterio F. Toro and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.

Book Computational Fluid and Solid Mechanics 2003

Download or read book Computational Fluid and Solid Mechanics 2003 written by K.J Bathe and published by Elsevier. This book was released on 2003-06-02 with total page 2485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics.Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design.The eight tasks are: - The automatic solution of mathematical models - Effective numerical schemes for fluid flows - The development of an effective mesh-free numerical solution method - The development of numerical procedures for multiphysics problems - The development of numerical procedures for multiscale problems - The modelling of uncertainties - The analysis of complete life cycles of systems - Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features - Bridges the gap between academic researchers and practitioners in industry - Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda - Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis

Book Wave Propagation in Fluids

Download or read book Wave Propagation in Fluids written by Vincent Guinot and published by John Wiley & Sons. This book was released on 2012-12-27 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite difference-, finite volume- and finite element-based numerical methods (including discontinuous Galerkin techniques) are covered and applied to various physical fields. Additional chapters include the treatment of geometric source terms, as well as direct and adjoint sensitivity modeling for hyperbolic conservation laws. A concluding chapter is devoted to practical recommendations to the modeler. Application exercises with on-line solutions are proposed at the end of the chapters.

Book Numerical Computation of Internal and External Flows  Volume 2

Download or read book Numerical Computation of Internal and External Flows Volume 2 written by Charles Hirsch and published by Wiley. This book was released on 1991-01-08 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Computation of Internal and External Flows Volume 2: Computational Methods for Inviscid and Viscous Flows C. Hirsch, Vrije Universiteit Brussel, Brussels, Belgium This second volume deals with the applications of computational methods to the problems of fluid dynamics. It complements the first volume to provide an excellent reference source in this vital and fast growing area. The author includes material on the numerical computation of potential flows and on the most up-to-date methods for Euler and Navier-Stokes equations. The coverage is comprehensive and includes detailed discussion of numerical techniques and algorithms, including implementation topics such as boundary conditions. Problems are given at the end of each chapter and there are comprehensive reference lists. Of increasing interest, the subject has powerful implications in such crucial fields as aeronautics and industrial fluid dynamics. Striking a balance between theory and application, the combined volumes will be useful for an increasing number of courses, as well as to practitioners and researchers in computational fluid dynamics. Contents Preface Nomenclature Part V: The Numerical Computation of Potential Flows Chapter 13 The Mathematical Formulations of the Potential Flow Model Chapter 14 The Discretization of the Subsonic Potential Equation Chapter 15 The Computation of Stationary Transonic Potential Flows Part VI: The Numerical Solution of the System of Euler Equations Chapter 16 The Mathematical Formulation of the System of Euler Equations Chapter 17 The Lax - Wendroff Family of Space-centred Schemes Chapter 18 The Central Schemes with Independent Time Integration Chapter 19 The Treatment of Boundary Conditions Chapter 20 Upwind Schemes for the Euler Equations Chapter 21 Second-order Upwind and High-resolution Schemes Part VII: The Numerical Solution of the Navier-Stokes Equations Chapter 22 The Properties of the System of Navier-Stokes Equations Chapter 23 Discretization Methods for the Navier-Stokes Equations Index