EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Euclid

    Book Details:
  • Author : Shoo Rayner
  • Publisher :
  • Release : 2017-11-02
  • ISBN : 9781908944368
  • Pages : 54 pages

Download or read book Euclid written by Shoo Rayner and published by . This book was released on 2017-11-02 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry is brought to life as Euclid explains principles of Geometry to his friends. With jokes and lots of illustrations, discover the beauty of geometry and, before you know it, you too will soon be a friend of Euclid! Shoo Rayner adds humour and simplicity to a tricky subject. A perfect introduction.

Book Classical Algebraic Geometry

Download or read book Classical Algebraic Geometry written by Igor V. Dolgachev and published by Cambridge University Press. This book was released on 2012-08-16 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.

Book Selected Topics In Geometry With Classical Vs  Computer Proving

Download or read book Selected Topics In Geometry With Classical Vs Computer Proving written by Pavel Pech and published by World Scientific Publishing Company. This book was released on 2007-11-12 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents various automatic techniques based on Gröbner bases elimination to prove well-known geometrical theorems and formulas. Besides proving theorems, these methods are used to discover new formulas, solve geometric inequalities, and construct objects — which cannot be easily done with a ruler and compass.Each problem is firstly solved by an automatic theorem proving method. Secondly, problems are solved classically — without using computer where possible — so that readers can compare the strengths and weaknesses of both approaches.

Book Geometry

    Book Details:
  • Author : V. V. Prasolov
  • Publisher : American Mathematical Soc.
  • Release : 2001-06-12
  • ISBN : 1470425432
  • Pages : 274 pages

Download or read book Geometry written by V. V. Prasolov and published by American Mathematical Soc.. This book was released on 2001-06-12 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.

Book The Wonder Book of Geometry

Download or read book The Wonder Book of Geometry written by David Acheson and published by Oxford University Press. This book was released on 2020-10-22 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: How can we be sure that Pythagoras's theorem is really true? Why is the 'angle in a semicircle' always 90 degrees? And how can tangents help determine the speed of a bullet? David Acheson takes the reader on a highly illustrated tour through the history of geometry, from ancient Greece to the present day. He emphasizes throughout elegant deduction and practical applications, and argues that geometry can offer the quickest route to the whole spirit of mathematics at its best. Along the way, we encounter the quirky and the unexpected, meet the great personalities involved, and uncover some of the loveliest surprises in mathematics.

Book Continuous Geometry

    Book Details:
  • Author : John von Neumann
  • Publisher : Princeton University Press
  • Release : 2016-06-02
  • ISBN : 1400883954
  • Pages : 312 pages

Download or read book Continuous Geometry written by John von Neumann and published by Princeton University Press. This book was released on 2016-06-02 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: In his work on rings of operators in Hilbert space, John von Neumann discovered a new mathematical structure that resembled the lattice system Ln. In characterizing its properties, von Neumann founded the field of continuous geometry. This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading.

Book Algebra   Geometry

    Book Details:
  • Author : Mark V. Lawson
  • Publisher : CRC Press
  • Release : 2016-11-25
  • ISBN : 1482246503
  • Pages : 310 pages

Download or read book Algebra Geometry written by Mark V. Lawson and published by CRC Press. This book was released on 2016-11-25 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebra & Geometry: An Introduction to University Mathematics provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first several chapters cover foundational topics, including the importance of proofs and properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solution of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra

Book Geometry   Intuition and Concepts

Download or read book Geometry Intuition and Concepts written by Jost-Hinrich Eschenburg and published by Springer Nature. This book was released on 2022-10-31 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the geometry of visual space in all its aspects. As in any branch of mathematics, the aim is to trace the hidden to the obvious; the peculiarity of geometry is that the obvious is sometimes literally before one's eyes.Starting from intuition, spatial concepts are embedded in the pre-existing mathematical framework of linear algebra and calculus. The path from visualization to mathematically exact language is itself the learning content of this book. This is intended to close an often lamented gap in understanding between descriptive preschool and school geometry and the abstract concepts of linear algebra and calculus. At the same time, descriptive geometric modes of argumentation are justified because their embedding in the strict mathematical language has been clarified. The concepts of geometry are of a very different nature; they denote, so to speak, different layers of geometric thinking: some arguments use only concepts such as point, straight line, and incidence, others require angles and distances, still others symmetry considerations. Each of these conceptual fields determines a separate subfield of geometry and a separate chapter of this book, with the exception of the last-mentioned conceptual field "symmetry", which runs through all the others: - Incidence: Projective geometry - Parallelism: Affine geometry - Angle: Conformal Geometry - Distance: Metric Geometry - Curvature: Differential Geometry - Angle as distance measure: Spherical and Hyperbolic Geometry - Symmetry: Mapping Geometry. The mathematical experience acquired in the visual space can be easily transferred to much more abstract situations with the help of the vector space notion. The generalizations beyond the visual dimension point in two directions: Extension of the number concept and transcending the three illustrative dimensions. This book is a translation of the original German 1st edition Geometrie – Anschauung und Begriffe by Jost-Hinrich Eschenburg, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.

Book Diophantine Geometry

    Book Details:
  • Author : Marc Hindry
  • Publisher : Springer Science & Business Media
  • Release : 2000-03-23
  • ISBN : 9780387989754
  • Pages : 766 pages

Download or read book Diophantine Geometry written by Marc Hindry and published by Springer Science & Business Media. This book was released on 2000-03-23 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

Book Discrete Geometry for Computer Imagery

Download or read book Discrete Geometry for Computer Imagery written by Christophe Reutenauer and published by Springer Science & Business Media. This book was released on 2009-09-11 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 15th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI 2009, held in Montréal, Canada, in September/October 2009. The 42 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on discrete shape, representation, recognition and analysis; discrete and combinatorial tools for image segmentation and analysis; discrete and combinatorial Topology; models for discrete geometry; geometric transforms; and discrete tomography.

Book Two Dimensional Conformal Geometry and Vertex Operator Algebras

Download or read book Two Dimensional Conformal Geometry and Vertex Operator Algebras written by Yi-Zhi Huang and published by Springer Science & Business Media. This book was released on 1997-07-15 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc­ tures of conformal field theories. Much of the recent progress has deep connec­ tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in [Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac­ Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on. He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a "big and important problem. " On the one hand, the theory of vertex operator algebras and their repre­ sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions.

Book Geometry of Manifolds with Non negative Sectional Curvature

Download or read book Geometry of Manifolds with Non negative Sectional Curvature written by Owen Dearricott and published by Springer. This book was released on 2014-07-22 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.

Book Shape

    Book Details:
  • Author : Jordan Ellenberg
  • Publisher : Penguin
  • Release : 2021-05-25
  • ISBN : 1984879065
  • Pages : 481 pages

Download or read book Shape written by Jordan Ellenberg and published by Penguin. This book was released on 2021-05-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: An instant New York Times Bestseller! “Unreasonably entertaining . . . reveals how geometric thinking can allow for everything from fairer American elections to better pandemic planning.” —The New York Times From the New York Times-bestselling author of How Not to Be Wrong—himself a world-class geometer—a far-ranging exploration of the power of geometry, which turns out to help us think better about practically everything. How should a democracy choose its representatives? How can you stop a pandemic from sweeping the world? How do computers learn to play Go, and why is learning Go so much easier for them than learning to read a sentence? Can ancient Greek proportions predict the stock market? (Sorry, no.) What should your kids learn in school if they really want to learn to think? All these are questions about geometry. For real. If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel. Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry"comes from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world—it explains it. Shape shows us how.

Book Handbook of Differential Geometry

Download or read book Handbook of Differential Geometry written by Franki J.E. Dillen and published by Elsevier. This book was released on 2005-11-29 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent).All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas.. Written by experts and covering recent research. Extensive bibliography. Dealing with a diverse range of areas. Starting from the basics

Book Elementary Differential Geometry

Download or read book Elementary Differential Geometry written by Barrett O'Neill and published by Academic Press. This book was released on 2014-05-12 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Differential Geometry focuses on the elementary account of the geometry of curves and surfaces. The book first offers information on calculus on Euclidean space and frame fields. Topics include structural equations, connection forms, frame fields, covariant derivatives, Frenet formulas, curves, mappings, tangent vectors, and differential forms. The publication then examines Euclidean geometry and calculus on a surface. Discussions focus on topological properties of surfaces, differential forms on a surface, integration of forms, differentiable functions and tangent vectors, congruence of curves, derivative map of an isometry, and Euclidean geometry. The manuscript takes a look at shape operators, geometry of surfaces in E, and Riemannian geometry. Concerns include geometric surfaces, covariant derivative, curvature and conjugate points, Gauss-Bonnet theorem, fundamental equations, global theorems, isometries and local isometries, orthogonal coordinates, and integration and orientation. The text is a valuable reference for students interested in elementary differential geometry.

Book Tensor Geometry

    Book Details:
  • Author : Christopher T. J. Dodson
  • Publisher : Springer Science & Business Media
  • Release : 2009-11-23
  • ISBN : 9783540520184
  • Pages : 456 pages

Download or read book Tensor Geometry written by Christopher T. J. Dodson and published by Springer Science & Business Media. This book was released on 2009-11-23 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatment of differential geometry and the mathematics required for general relativity makes the subject accessible, for the first time, to anyone familiar with elementary calculus in one variable and with some knowledge of vector algebra. The emphasis throughout is on the geometry of the mathematics, which is greatly enhanced by the many illustrations presenting figures of three and more dimensions as closely as the book form will allow.

Book An Invitation to Noncommutative Geometry

Download or read book An Invitation to Noncommutative Geometry written by Masoud Khalkhali and published by World Scientific. This book was released on 2008 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.