EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometry Of Spherical Space Form Groups  The  Second Edition

Download or read book Geometry Of Spherical Space Form Groups The Second Edition written by Peter B Gilkey and published by World Scientific. This book was released on 2018-01-04 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on discussing the interplay between the analysis, as exemplified by the eta invariant and other spectral invariants, the number theory, as exemplified by the relevant Dedekind sums and Rademacher reciprocity, the algebraic topology, as exemplified by the equivariant bordism groups, K-theory groups, and connective K-theory groups, and the geometry of spherical space forms, as exemplified by the Smith homomorphism. These are used to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group.This volume is a completely rewritten revision of the first edition. The underlying organization is modified to provide a better organized and more coherent treatment of the material involved. In addition, approximately 100 pages have been added to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. We have chosen to focus on the geometric aspect of the theory rather than more abstract algebraic constructions (like the assembly map) and to restrict our attention to spherical space forms rather than more general and more complicated geometrical examples to avoid losing contact with the fundamental geometry which is involved.

Book The Geometry Of Spherical Space Form Groups

Download or read book The Geometry Of Spherical Space Form Groups written by Peter B Gilkey and published by World Scientific. This book was released on 1989-09-01 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: New Edition: The Geometry of Spherical Space Form Groups (2nd Edition)In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pinc and Spinc equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theory groups.There is a deep relationship between topology and analysis with differential geometry serving as the bridge. This book is intended to serve as an introduction to this subject for people from different research backgrounds.This book is intended as a research monograph for people who are not experts in all the areas discussed. It is written for topologists wishing to understand some of the analytic details and for analysists wishing to understand some of the topological ideas. It is also intended as an introduction to the field for graduate students.

Book The Geometry of Spherical Space Form Groups  Second Edition

Download or read book The Geometry of Spherical Space Form Groups Second Edition written by Peter B. Gilkey and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Aspects of Differential Geometry V

Download or read book Aspects of Differential Geometry V written by Esteban Calviño-Louzao and published by Springer Nature. This book was released on 2022-05-31 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book V completes the discussion of the first four books by treating in some detail the analytic results in elliptic operator theory used previously. Chapters 16 and 17 provide a treatment of the techniques in Hilbert space, the Fourier transform, and elliptic operator theory necessary to establish the spectral decomposition theorem of a self-adjoint operator of Laplace type and to prove the Hodge Decomposition Theorem that was stated without proof in Book II. In Chapter 18, we treat the de Rham complex and the Dolbeault complex, and discuss spinors. In Chapter 19, we discuss complex geometry and establish the Kodaira Embedding Theorem.

Book The Geometry of Spherical Space Form Groups

Download or read book The Geometry of Spherical Space Form Groups written by Peter B. Gilkey and published by World Scientific. This book was released on 1989 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pinc and Spinc equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theory groups.There is a deep relationship between topology and analysis with differential geometry serving as the bridge. This book is intended to serve as an introduction to this subject for people from different research backgrounds.This book is intended as a research monograph for people who are not experts in all the areas discussed. It is written for topologists wishing to understand some of the analytic details and for analysists wishing to understand some of the topological ideas. It is also intended as an introduction to the field for graduate students.

Book Handbook of Discrete and Computational Geometry  Second Edition

Download or read book Handbook of Discrete and Computational Geometry Second Edition written by Csaba D. Toth and published by CRC Press. This book was released on 2004-04-13 with total page 1557 pages. Available in PDF, EPUB and Kindle. Book excerpt: While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies

Book Aspects of Boundary Problems in Analysis and Geometry

Download or read book Aspects of Boundary Problems in Analysis and Geometry written by Juan Gil and published by Birkhäuser. This book was released on 2012-12-06 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary problems constitute an essential field of common mathematical interest, they lie in the center of research activities both in analysis and geometry. This book encompasses material from both disciplines, and focuses on their interactions which are particularly apparent in this field. Moreover, the survey style of the contributions makes the topics accessible to a broad audience with a background in analysis or geometry, and enables the reader to get a quick overview.

Book Geometry VI

    Book Details:
  • Author : M.M. Postnikov
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • ISBN : 3662044331
  • Pages : 521 pages

Download or read book Geometry VI written by M.M. Postnikov and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats that part of Riemannian geometry related to more classical topics in a very original, clear and solid style. The author successfully combines the co-ordinate and invariant approaches to differential geometry, giving the reader tools for practical calculations as well as a theoretical understanding of the subject.

Book Handbook of Differential Geometry  Volume 1

Download or read book Handbook of Differential Geometry Volume 1 written by F.J.E. Dillen and published by Elsevier. This book was released on 1999-12-16 with total page 1067 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.

Book Geometry and Topology  Aarhus

Download or read book Geometry and Topology Aarhus written by Karsten Grove and published by American Mathematical Soc.. This book was released on 2000 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes both survey and research articles on major advances and future developments in geometry and topology. Papers include those presented as part of the 5th Aarhus Conference - a meeting of international participants held in connection with ICM Berlin in 1998 - and related papers on the subject. This collection of papers is aptly published in the Contemporary Mathematics series, as the works represent the state of research and address areas of future development in the area of manifold theory and geometry. The survey articles in particular would serve well as supplemental resources in related graduate courses.

Book Spaces of Constant Curvature

Download or read book Spaces of Constant Curvature written by Joseph A. Wolf and published by American Mathematical Society. This book was released on 2023-06-05 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the sixth edition of the classic Spaces of Constant Curvature, first published in 1967, with the previous (fifth) edition published in 1984. It illustrates the high degree of interplay between group theory and geometry. The reader will benefit from the very concise treatments of riemannian and pseudo-riemannian manifolds and their curvatures, of the representation theory of finite groups, and of indications of recent progress in discrete subgroups of Lie groups. Part I is a brief introduction to differentiable manifolds, covering spaces, and riemannian and pseudo-riemannian geometry. It also contains a certain amount of introductory material on symmetry groups and space forms, indicating the direction of the later chapters. Part II is an updated treatment of euclidean space form. Part III is Wolf's classic solution to the Clifford–Klein Spherical Space Form Problem. It starts with an exposition of the representation theory of finite groups. Part IV introduces riemannian symmetric spaces and extends considerations of spherical space forms to space forms of riemannian symmetric spaces. Finally, Part V examines space form problems on pseudo-riemannian symmetric spaces. At the end of Chapter 12 there is a new appendix describing some of the recent work on discrete subgroups of Lie groups with application to space forms of pseudo-riemannian symmetric spaces. Additional references have been added to this sixth edition as well.

Book The Geometry of Spherical Space Form Groups

Download or read book The Geometry of Spherical Space Form Groups written by Peter B. Gilkey and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lectures on Differential Geometry

Download or read book Lectures on Differential Geometry written by Bennett Chow and published by American Mathematical Society. This book was released on 2024-09-23 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry is a subject related to many fields in mathematics and the sciences. The authors of this book provide a vertically integrated introduction to differential geometry and geometric analysis. The material is presented in three distinct parts: an introduction to geometry via submanifolds of Euclidean space, a first course in Riemannian geometry, and a graduate special topics course in geometric analysis, and it contains more than enough content to serve as a good textbook for a course in any of these three topics. The reader will learn about the classical theory of submanifolds, smooth manifolds, Riemannian comparison geometry, bundles, connections, and curvature, the Chern?Gauss?Bonnet formula, harmonic functions, eigenfunctions, and eigenvalues on Riemannian manifolds, minimal surfaces, the curve shortening flow, and the Ricci flow on surfaces. This will provide a pathway to further topics in geometric analysis such as Ricci flow, used by Hamilton and Perelman to solve the Poincar‚ and Thurston geometrization conjectures, mean curvature flow, and minimal submanifolds. The book is primarily aimed at graduate students in geometric analysis, but it will also be of interest to postdoctoral researchers and established mathematicians looking for a refresher or deeper exploration of the topic.

Book Geometry in History

    Book Details:
  • Author : S. G. Dani
  • Publisher : Springer Nature
  • Release : 2019-10-18
  • ISBN : 3030136094
  • Pages : 759 pages

Download or read book Geometry in History written by S. G. Dani and published by Springer Nature. This book was released on 2019-10-18 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.

Book Geometric Analysis on Symmetric Spaces

Download or read book Geometric Analysis on Symmetric Spaces written by Phillip Griffiths and published by American Mathematical Soc.. This book was released on 1989 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book gives the first systematic exposition of geometric analysis on Riemannian symmetric spaces and its relationship to the representation theory of Lie groups. The book starts with modern integral geometry for double fibrations and treats several examples in detail. After discussing the theory of Radon transforms and Fourier transforms on symmetric spaces, inversion formulas, and range theorems, Helgason examines applications to invariant differential equations on symmetric spaces, existence theorems, and explicit solution formulas, particularly potential theory and wave equations. The canonical multitemporal wave equation on a symmetric space is included. The book concludes with a chapter on eigenspace representations - that is, representations on solution spaces of invariant differential equations."--BOOK JACKET.

Book The Geometry and Topology of Coxeter Groups

Download or read book The Geometry and Topology of Coxeter Groups written by Michael Davis and published by Princeton University Press. This book was released on 2008 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.

Book Geometry of Group Representations

Download or read book Geometry of Group Representations written by William Mark Goldman and published by American Mathematical Soc.. This book was released on 1988 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains papers based on talks delivered at the AMS-IMS-SIAM Summer Research Conference on the Geometry of Group Representations, held at the University of Colorado in Boulder in July 1987. This work offers an understanding of the state of research in the geometry of group representations and their applications.