EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Manifolds  Sheaves  and Cohomology

Download or read book Manifolds Sheaves and Cohomology written by Torsten Wedhorn and published by Springer. This book was released on 2016-07-25 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.

Book First Concepts of Topology

Download or read book First Concepts of Topology written by William G. Chinn and published by MAA. This book was released on 1966 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 150 problems and solutions.

Book Natural Operations in Differential Geometry

Download or read book Natural Operations in Differential Geometry written by Ivan Kolar and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is threefold: First it should be a monographical work on natural bundles and natural op erators in differential geometry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general concepts. The vector bundle A kT* M is in fact the value of a functor, which associates a bundle over M to each manifold M and a vector bundle homomorphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M.

Book Differential Geometry and Topology

Download or read book Differential Geometry and Topology written by Keith Burns and published by CRC Press. This book was released on 2005-05-27 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.

Book Introduction to Geometry and Topology

Download or read book Introduction to Geometry and Topology written by Werner Ballmann and published by Birkhäuser. This book was released on 2018-07-18 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.

Book New Foundations for Physical Geometry

Download or read book New Foundations for Physical Geometry written by Tim Maudlin and published by . This book was released on 2014-02 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.

Book Topological  Differential and Conformal Geometry of Surfaces

Download or read book Topological Differential and Conformal Geometry of Surfaces written by Norbert A'Campo and published by Springer Nature. This book was released on 2021-10-27 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes’ Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss–Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow’s Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.

Book Topology and Geometry for Physics

Download or read book Topology and Geometry for Physics written by Helmut Eschrig and published by Springer. This book was released on 2011-01-26 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smooth finite-dimensional manifolds, tensor and exterior calculus operating on them, homotopy, (co)homology theory including Morse theory of critical points, as well as the theory of fiber bundles and Riemannian geometry, are treated. Examples from physics comprise topological charges, the topology of periodic boundary conditions for solids, gauge fields, geometric phases in quantum physics and gravitation.

Book A Basic Course in Algebraic Topology

Download or read book A Basic Course in Algebraic Topology written by William S. Massey and published by Springer. This book was released on 2019-06-28 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.

Book Topology and Geometry for Physicists

Download or read book Topology and Geometry for Physicists written by Charles Nash and published by Courier Corporation. This book was released on 2013-08-16 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.

Book Geometry and Topological Concepts

Download or read book Geometry and Topological Concepts written by Dr. P. Somashekhara and published by RK Publication. This book was released on 2024-09-21 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry and Topological Concepts is an exploration of the fundamental principles and applications of geometry and topology in mathematics and related fields. This book delves into the intricacies of shapes, sizes, and the properties of space, emphasizing the connections between these areas of study. It covers essential topics such as Euclidean and non-Euclidean geometries, topological spaces, and geometric transformations, providing readers with both theoretical foundations and practical examples. Ideal for students and professionals, it fosters a deeper understanding of the mathematical structures that underpin our world.

Book A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics

Download or read book A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics written by Antonio Sergio Teixeira Pires and published by Morgan & Claypool Publishers. This book was released on 2019-03-21 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last years there have been great advances in the applications of topology and differential geometry to problems in condensed matter physics. Concepts drawn from topology and geometry have become essential to the understanding of several phenomena in the area. Physicists have been creative in producing models for actual physical phenomena which realize mathematically exotic concepts and new phases have been discovered in condensed matter in which topology plays a leading role. An important classification paradigm is the concept of topological order, where the state characterizing a system does not break any symmetry, but it defines a topological phase in the sense that certain fundamental properties change only when the system passes through a quantum phase transition. The main purpose of this book is to provide a brief, self-contained introduction to some mathematical ideas and methods from differential geometry and topology, and to show a few applications in condensed matter. It conveys to physicists the basis for many mathematical concepts, avoiding the detailed formality of most textbooks.

Book The Biggest Ideas in the Universe

Download or read book The Biggest Ideas in the Universe written by Sean Carroll and published by Penguin. This book was released on 2022-09-20 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.

Book Basic Concepts of Algebraic Topology

Download or read book Basic Concepts of Algebraic Topology written by F.H. Croom and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.

Book From Geometry to Topology

Download or read book From Geometry to Topology written by H. Graham Flegg and published by Courier Corporation. This book was released on 2012-03-08 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4–12 give a largely intuitive presentation of selected topics. In the remaining five chapters, the author moves to a more conventional presentation of continuity, sets, functions, metric spaces, and topological spaces. Exercises and Problems. 101 black-and-white illustrations. 1974 edition.

Book Intuitive Concepts in Elementary Topology

Download or read book Intuitive Concepts in Elementary Topology written by B.H. Arnold and published by Courier Corporation. This book was released on 2015-02-23 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classroom-tested and much-cited, this concise text is designed for undergraduates. It offers a valuable and instructive introduction to the basic concepts of topology, taking an intuitive rather than an axiomatic viewpoint. 1962 edition.

Book Principles of Topology

    Book Details:
  • Author : Fred H. Croom
  • Publisher : Courier Dover Publications
  • Release : 2016-02-17
  • ISBN : 0486801543
  • Pages : 340 pages

Download or read book Principles of Topology written by Fred H. Croom and published by Courier Dover Publications. This book was released on 2016-02-17 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published: Philadelphia: Saunders College Publishing, 1989; slightly corrected.