EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Methods of Geometric Analysis in Extension and Trace Problems

Download or read book Methods of Geometric Analysis in Extension and Trace Problems written by Alexander Brudnyi and published by Springer Science & Business Media. This book was released on 2011-10-07 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.

Book Vanishing and Finiteness Results in Geometric Analysis

Download or read book Vanishing and Finiteness Results in Geometric Analysis written by Stefano Pigola and published by Springer Science & Business Media. This book was released on 2008-05-28 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods, from spectral theory and qualitative properties of solutions of PDEs, to comparison theorems in Riemannian geometry and potential theory.

Book Curvature of Space and Time  with an Introduction to Geometric Analysis

Download or read book Curvature of Space and Time with an Introduction to Geometric Analysis written by Iva Stavrov and published by American Mathematical Soc.. This book was released on 2020-11-12 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College.

Book Geometric Analysis

    Book Details:
  • Author : Peter Li
  • Publisher : Cambridge University Press
  • Release : 2012-05-03
  • ISBN : 1107020646
  • Pages : 417 pages

Download or read book Geometric Analysis written by Peter Li and published by Cambridge University Press. This book was released on 2012-05-03 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text demonstrates the basic techniques for researchers interested in the field of geometric analysis.

Book Geometric Analysis and Function Spaces

Download or read book Geometric Analysis and Function Spaces written by Steven George Krantz and published by American Mathematical Soc.. This book was released on 1993-01-01 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings into focus the synergistic interaction between analysis and geometry by examining a variety of topics in function theory, real analysis, harmonic analysis, several complex variables, and group actions. Krantz's approach is motivated by examples, both classical and modern, which highlight the symbiotic relationship between analysis and geometry. Creating a synthesis among a host of different topics, this book is useful to researchers in geometry and analysis and may be of interest to physicists, astronomers, and engineers in certain areas. The book is based on lectures presented at an NSF-CBMS Regional Conference held in May 1992.

Book Elements of Geometry  Geometrical Analysis  and Plane Trigonometry

Download or read book Elements of Geometry Geometrical Analysis and Plane Trigonometry written by Sir John Leslie and published by . This book was released on 1809 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An introduction to the geometrical analysis of the ancients  containing a dissertation on that analysis  its application to the demonstration of theorems  etc

Download or read book An introduction to the geometrical analysis of the ancients containing a dissertation on that analysis its application to the demonstration of theorems etc written by and published by . This book was released on 1811 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Asymptotic Geometric Analysis  Part I

Download or read book Asymptotic Geometric Analysis Part I written by Shiri Artstein-Avidan and published by American Mathematical Soc.. This book was released on 2015-06-18 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomenon", one of the most powerful tools of the theory, responsible for many counterintuitive results. A central theme in this book is the interaction of randomness and pattern. At first glance, life in high dimension seems to mean the existence of multiple "possibilities", so one may expect an increase in the diversity and complexity as dimension increases. However, the concentration of measure and effects caused by convexity show that this diversity is compensated and order and patterns are created for arbitrary convex bodies in the mixture caused by high dimensionality. The book is intended for graduate students and researchers who want to learn about this exciting subject. Among the topics covered in the book are convexity, concentration phenomena, covering numbers, Dvoretzky-type theorems, volume distribution in convex bodies, and more.

Book Geometrical Methods of Nonlinear Analysis

Download or read book Geometrical Methods of Nonlinear Analysis written by Alexander Krasnosel'skii and published by Springer. This book was released on 2011-11-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometrical (in particular, topological) methods in nonlinear analysis were originally invented by Banach, Birkhoff, Kellogg, Schauder, Leray, and others in existence proofs. Since about the fifties, these methods turned out to be essentially the sole approach to a variety of new problems: the investigation of iteration processes and other procedures in numerical analysis, in bifur cation problems and branching of solutions, estimates on the number of solutions and criteria for the existence of nonzero solutions, the analysis of the structure of the solution set, etc. These methods have been widely applied to the theory of forced vibrations and auto-oscillations, to various problems in the theory of elasticity and fluid. mechanics, to control theory, theoretical physics, and various parts of mathematics. At present, nonlinear analysis along with its geometrical, topological, analytical, variational, and other methods is developing tremendously thanks to research work in many countries. Totally new ideas have been advanced, difficult problems have been solved, and new applications have been indicated. To enumerate the publications of the last few years one would need dozens of pages. On the other hand, many problems of non linear analysis are still far from a solution (problems arising from the internal development of mathematics and, in particular, problems arising in the process of interpreting new problems in the natural sciences). We hope that the English edition of our book will contribute to the further propagation of the ideas of nonlinear analysis.

Book Geometric Data Analysis

    Book Details:
  • Author : Brigitte Le Roux
  • Publisher : Springer Science & Business Media
  • Release : 2004-06-29
  • ISBN : 9781402022357
  • Pages : 496 pages

Download or read book Geometric Data Analysis written by Brigitte Le Roux and published by Springer Science & Business Media. This book was released on 2004-06-29 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Data Analysis (GDA) is the name suggested by P. Suppes (Stanford University) to designate the approach to Multivariate Statistics initiated by Benzécri as Correspondence Analysis, an approach that has become more and more used and appreciated over the years. This book presents the full formalization of GDA in terms of linear algebra - the most original and far-reaching consequential feature of the approach - and shows also how to integrate the standard statistical tools such as Analysis of Variance, including Bayesian methods. Chapter 9, Research Case Studies, is nearly a book in itself; it presents the methodology in action on three extensive applications, one for medicine, one from political science, and one from education (data borrowed from the Stanford computer-based Educational Program for Gifted Youth ). Thus the readership of the book concerns both mathematicians interested in the applications of mathematics, and researchers willing to master an exceptionally powerful approach of statistical data analysis.

Book Geometric Analysis and Nonlinear Partial Differential Equations

Download or read book Geometric Analysis and Nonlinear Partial Differential Equations written by Stefan Hildebrandt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.

Book The Ethics of Technology

Download or read book The Ethics of Technology written by Martin Peterson and published by Oxford University Press. This book was released on 2017-06-01 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autonomous cars, drones, and electronic surveillance systems are examples of technologies that raise serious ethical issues. In this analytic investigation, Martin Peterson articulates and defends five moral principles for addressing ethical issues related to new and existing technologies: the cost-benefit principle, the precautionary principle, the sustainability principle, the autonomy principle, and the fairness principle. It is primarily the method developed by Peterson for articulating and analyzing the five principles that is novel. He argues that geometric concepts such as points, lines, and planes can be put to work for clarifying the structure and scope of these and other moral principles. This geometric account is based on the Aristotelian dictum that like cases should be treated alike, meaning that the degree of similarity between different cases can be represented as a distance in moral space. The more similar a pair of cases are from a moral point of view, the closer is their location in moral space. A case that lies closer in moral space to a paradigm case for some principle p than to any paradigm for any other principle should be analyzed by applying principle p. The book also presents empirical results from a series of experimental studies in which experts (philosophers) and laypeople (engineering students) have been asked to apply the geometric method to fifteen real-world cases. The empirical findings indicate that experts and laypeople do in fact apply geometrically construed moral principles in roughly, but not exactly, the manner advocates of the geometric method believe they ought to be applied.

Book Groups and Geometric Analysis

Download or read book Groups and Geometric Analysis written by Sigurdur Helgason and published by American Mathematical Society. This book was released on 2022-03-17 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.

Book Complex Analysis

    Book Details:
  • Author : Steven G. Krantz
  • Publisher : Cambridge University Press
  • Release : 2004
  • ISBN : 9780883850350
  • Pages : 252 pages

Download or read book Complex Analysis written by Steven G. Krantz and published by Cambridge University Press. This book was released on 2004 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced textbook on central topic of pure mathematics.

Book Geometrical Analysis

Download or read book Geometrical Analysis written by Benjamin Hallowell and published by . This book was released on 1872 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometric Analysis

    Book Details:
  • Author : Jingyi Chen
  • Publisher : Springer Nature
  • Release : 2020-04-10
  • ISBN : 3030349535
  • Pages : 615 pages

Download or read book Geometric Analysis written by Jingyi Chen and published by Springer Nature. This book was released on 2020-04-10 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.

Book Geometric Nonlinear Functional Analysis

Download or read book Geometric Nonlinear Functional Analysis written by Yoav Benyamini and published by American Mathematical Soc.. This book was released on 2000 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic study of geometric nonlinear functional analysis. The main theme is the study of uniformly continuous and Lipschitz functions between Banach spaces. This study leads to the classification of Banach spaces and of their important subsets in the uniform and Lipschitz categories.