EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometric Variational Integrators for Multisymplectic PDEs and Adjoint Systems

Download or read book Geometric Variational Integrators for Multisymplectic PDEs and Adjoint Systems written by Brian Kha Tran and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational integrators are a class of geometric structure-preserving numerical integrators that are based on a discretization of Hamilton's variational principle. We construct, analyze and investigate the applications of variational integrators to multisymplectic partial differential equations and to adjoint systems. The variational structure of multisymplectic PDEs encodes both the conservation laws admitted by these systems via Noether's theorem and multisymplecticity, a covariant spacetime generalization of symplecticity. We develop variational integrators for these systems which preserve these properties at the discrete level, in both the Lagrangian and Hamiltonian settings. In the Lagrangian setting, we utilize compatible finite element spaces to develop these variational integrators and utilize their preservation of the de Rham complex to define discrete geometric structures associated to these integrators and naturally relate them to their continuous counterparts. In the Hamiltonian setting, we utilize a discrete Type II variational principle, based on the notion of a Type II generating functional for multisymplectic PDEs, to construct structure-preserving variational integrators for multisymplectic Hamiltonian PDEs. Adjoint systems are ubiquitous in optimization and optimal control theory since they allow for efficient computation of sensitivities of cost functionals in optimization problems and arise as necessary conditions for optimality in optimal control problems via Pontryagin's maximum principle. Adjoint systems admit a fundamental quadratic conservation law which is at the heart of the method of adjoint sensitivity analysis; this conservation law arises from the symplectic geometry of these systems. We develop a geometric theory for continuous and discrete adjoint systems associated to ordinary differential equations and differential-algebraic equations, by investigating their underlying symplectic and presymplectic structures, respectively. We develop a Type II variational principle for such systems at the continuous level. Subsequently, we discretize this variational principle to construct variational integrators for adjoint systems which preserve the quadratic conservation law at the discrete level and thus, allow for sensitivities of cost functions to be computed exactly. We further extend this framework to the Lie group setting and develop a variational integrator based on novel continuous and discrete Type II variational principles on cotangent bundles of Lie groups.

Book Symplectic Geometric Algorithms for Hamiltonian Systems

Download or read book Symplectic Geometric Algorithms for Hamiltonian Systems written by Kang Feng and published by Springer Science & Business Media. This book was released on 2010-10-18 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Symplectic Geometric Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development of numerical methodology for Hamiltonian systems is well motivated. Were it successful, it would imply wide-ranging applications.

Book Lie Group Machine Learning

Download or read book Lie Group Machine Learning written by Fanzhang Li and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-05 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artifi cial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artifi cial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning. Li Fanzhang is professor at the Soochow University, China. He is director of network security engineering laboratory in Jiangsu Province and is also the director of the Soochow Institute of industrial large data. He published more than 200 papers, 7 academic monographs, and 4 textbooks. Zhang Li is professor at the School of Computer Science and Technology of the Soochow University. She published more than 100 papers in journals and conferences, and holds 23 patents. Zhang Zhao is currently an associate professor at the School of Computer Science and Technology of the Soochow University. He has authored and co-authored more than 60 technical papers.

Book Lectures on Symplectic Geometry

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Book Recent Progress and Modern Challenges in Applied Mathematics  Modeling and Computational Science

Download or read book Recent Progress and Modern Challenges in Applied Mathematics Modeling and Computational Science written by Roderick Melnik and published by Springer. This book was released on 2017-09-05 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science. The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.

Book Lectures on Mechanics

    Book Details:
  • Author : Jerrold E. Marsden
  • Publisher : Cambridge University Press
  • Release : 1992-04-30
  • ISBN : 9780521428446
  • Pages : 272 pages

Download or read book Lectures on Mechanics written by Jerrold E. Marsden and published by Cambridge University Press. This book was released on 1992-04-30 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the 1991 LMS Invited Lectures given by Professor Marsden, this book discusses and applies symmetry methods to such areas as bifurcations and chaos in mechanical systems.

Book Geometric Control of Mechanical Systems

Download or read book Geometric Control of Mechanical Systems written by Francesco Bullo and published by Springer. This book was released on 2019-06-12 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: The area of analysis and control of mechanical systems using differential geometry is flourishing. This book collects many results over the last decade and provides a comprehensive introduction to the area.

Book Hamiltonian Reduction by Stages

Download or read book Hamiltonian Reduction by Stages written by Jerrold E. Marsden and published by Springer. This book was released on 2007-06-05 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a detailed account of the theory of symplectic reduction by stages, along with numerous illustrations of the theory. It gives special emphasis to group extensions, including a detailed discussion of the Euclidean group, the oscillator group, the Bott-Virasoro group and other groups of matrices. The volume also provides ample background theory on symplectic reduction and cotangent bundle reduction.

Book Discrete Variational Derivative Method

Download or read book Discrete Variational Derivative Method written by Daisuke Furihata and published by CRC Press. This book was released on 2010-12-09 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Partial Differential Equations (PDEs) have become increasingly important in the description of physical phenomena. Unlike Ordinary Differential Equations, PDEs can be used to effectively model multidimensional systems. The methods put forward in Discrete Variational Derivative Method concentrate on a new class of "structure-preserving num

Book Computational Mathematics and Variational Analysis

Download or read book Computational Mathematics and Variational Analysis written by Nicholas J. Daras and published by Springer Nature. This book was released on 2020-06-06 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a broad discussion of computational methods and theories on various classical and modern research problems from pure and applied mathematics. Readers conducting research in mathematics, engineering, physics, and economics will benefit from the diversity of topics covered. Contributions from an international community treat the following subjects: calculus of variations, optimization theory, operations research, game theory, differential equations, functional analysis, operator theory, approximation theory, numerical analysis, asymptotic analysis, and engineering. Specific topics include algorithms for difference of monotone operators, variational inequalities in semi-inner product spaces, function variation principles and normed minimizers, equilibria of parametrized N-player nonlinear games, multi-symplectic numerical schemes for differential equations, time-delay multi-agent systems, computational methods in non-linear design of experiments, unsupervised stochastic learning, asymptotic statistical results, global-local transformation, scattering relations of elastic waves, generalized Ostrowski and trapezoid type rules, numerical approximation, Szász Durrmeyer operators and approximation, integral inequalities, behaviour of the solutions of functional equations, functional inequalities in complex Banach spaces, functional contractions in metric spaces.

Book Magnetohydrodynamics and Fluid Dynamics  Action Principles and Conservation Laws

Download or read book Magnetohydrodynamics and Fluid Dynamics Action Principles and Conservation Laws written by Gary Webb and published by Springer. This book was released on 2018-02-05 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helicity, Ertels’ theorem and potential vorticity, the Hollman invariant, and the Godbillon Vey invariant. The book develops the non-canonical Hamiltonian approach to MHD using the non-canonical Poisson bracket, while also refining the multisymplectic approach to ideal MHD and obtaining novel nonlocal conservation laws. It also briefly discusses Anco and Bluman’s direct method for deriving conservation laws. A range of examples is used to illustrate topological invariants in MHD and fluid dynamics, including the Hopf invariant, the Calugareanu invariant, the Taylor magnetic helicity reconnection hypothesis for magnetic fields in highly conducting plasmas, and the magnetic helicity of Alfvén simple waves, MHD topological solitons, and the Parker Archimedean spiral magnetic field. The Lagrangian map is used to obtain a class of solutions for incompressible MHD. The Aharonov-Bohm interpretation of magnetic helicity and cross helicity is discussed. In closing, examples of magnetosonic N-waves are used to illustrate the role of the wave number and group velocity concepts for MHD waves. This self-contained and pedagogical guide to the fundamentals will benefit postgraduate-level newcomers and seasoned researchers alike.

Book Towards the Mathematics of Quantum Field Theory

Download or read book Towards the Mathematics of Quantum Field Theory written by Frédéric Paugam and published by Springer Science & Business Media. This book was released on 2014-02-20 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ambitious and original book sets out to introduce to mathematicians (even including graduate students ) the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in use. This in turn promotes the interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, though mathematicians are the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras.

Book Quantization of Singular Symplectic Quotients

Download or read book Quantization of Singular Symplectic Quotients written by N.P. Landsman and published by Springer Science & Business Media. This book was released on 2001-10-01 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first exposition of the quantization theory of singular symplectic (Marsden-Weinstein) quotients and their applications to physics. The reader will acquire an introduction to the various techniques used in this area, as well as an overview of the latest research approaches. These involve classical differential and algebraic geometry, as well as operator algebras and noncommutative geometry. Thus one will be amply prepared to follow future developments in this field.

Book Foundations of Computational Mathematics

Download or read book Foundations of Computational Mathematics written by Ronald A. DeVore and published by Cambridge University Press. This book was released on 2001-05-17 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collection of papers by leading researchers in computational mathematics, suitable for graduate students and researchers.

Book Equivalence  Invariants and Symmetry

Download or read book Equivalence Invariants and Symmetry written by Peter J. Olver and published by Cambridge University Press. This book was released on 1995-06-30 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawing on a wide range of mathematical disciplines, including geometry, analysis, applied mathematics and algebra, this book presents an innovative synthesis of methods used to study problems of equivalence and symmetry which arise in a variety of mathematical fields and physical applications. Systematic and constructive methods for solving equivalence problems and calculating symmetries are developed and applied to a wide variety of mathematical systems, including differential equations, variational problems, manifolds, Riemannian metrics, polynomials and differential operators. Particular emphasis is given to the construction and classification of invariants, and to the reductions of complicated objects to simple canonical forms. This book will be a valuable resource for students and researchers in geometry, analysis, algebra, mathematical physics and other related fields.

Book Geometric Theory of Information

Download or read book Geometric Theory of Information written by Frank Nielsen and published by Springer Science & Business Media. This book was released on 2014-05-08 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition and natural language treatment which are also substantially relevant for the industry.

Book Integration Algorithms and Classical Mechanics

Download or read book Integration Algorithms and Classical Mechanics written by Jerrold E. Marsden and published by American Mathematical Soc.. This book was released on 1996 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dedicated to the late Juan Carlos Simo, this volume contains the proceedings of a workshop held at the Fields Institute in October 1993. The articles focus on current algorithms for the integration of mechanical systems, from systems in celestial mechanics to coupled rigid bodies to fluid mechanics. The scope of the articles ranges from symplectic integration methods to energy-momentum methods and related themes.