EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometric Characterization and Optimization of 3D Organic Flexible Solar Cells

Download or read book Geometric Characterization and Optimization of 3D Organic Flexible Solar Cells written by Ashish K. Gaikwad and published by . This book was released on 2011 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometric Modeling and Optimization in 3D Solar Cells

Download or read book Geometric Modeling and Optimization in 3D Solar Cells written by Jin Hao Wan (M. Eng.) and published by . This book was released on 2014 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conversion of solar energy in three-dimensional (3D) devices has been essentially untapped. In this thesis, I design and implement a C++ program that models and optimizes a 3D solar cell ensemble embedded in a given landscape. The goal is to find the optimum arrangement of these solar cells with respect to the landscape buildings so as to maximize the total energy collected. On the modeling side, in order to calculate the energies generated from both direct and reflected sunlight, I store all the geometric inputs in a binary space partition tree; this data structure in turn efficiently supports a crucial polygon clipping algorithm. On the optimization side, I deploy simulated annealing (SA). Both advantages and limitation of SA lead me to restrict the solar cell docking sites to orthogonal grids imposed on the building surfaces. The resulting program is an elegant trade-off between accuracy and efficiency.

Book Characterization and Optimization of Silicon Solar Cells

Download or read book Characterization and Optimization of Silicon Solar Cells written by Min Koo Han and published by . This book was released on 1982 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Pioneering the Fabrication and Characterization of Organic Solar Cell Devices at Mount Holyoke College

Download or read book Pioneering the Fabrication and Characterization of Organic Solar Cell Devices at Mount Holyoke College written by Andrea Miranda and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A solar cell is a device that converts light energy into electrical energy. Solar cells hold plenty of potential in becoming a more widely available source of electricity that makes economic sense. However, improvements in the materials and fabrication are necessary to increase accessibility and power conversion efficiency. Organic, or carbon-based materials, pose an interesting alternative to traditional silicon-based solar cells. An organic solar cell (OSC) composed of thin films deposited onto a glass or flexible polymer substrate could be the future of economically viable solar energy. In this thesis, we describe the fabrication of a type of organic solar cell, the polymer:fullerene bulk-heterojunction solar cells. This is the first attempt to fabricate a device in the Solar Cell Fabrication and Characterization Laboratory. We have replicated the OSC fabrication process outlined by the Yang Group (Shrotriya et al., 2006) with a goal of demonstrating a properly functioning solar cell competitive with state of the art devices. Fabrication of the OSC begins with deposition of an organic, hole-conducting film poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Next, the active layer composed of poly(3-hexylthiophene-2,5-diyl) (polythiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM, a fullerene derivative), is mixed in a 1:1 ratio and deposited from solution as one film. These two organic thin-films were deposited by spin-casting solutions of different concentration at different spin speeds to achieve varying thicknesses. Lastly, thermal evaporation was used to deposit the calcium and silver metal cathode. The thickness of various layers in the OSC sandwich structure was measured with an atomic force microscope. Film uniformity was determined with an optical microscope. The I-V characteristics were measured with a parameter analyzer. Because the thickness is a critical parameter in the optimization of device efficiency, we have determined the relationship between thickness and spin speed of the organic thin films. Our results indicate that we have successfully achieved, for the first time, on par with recent results in the literature, a fully functioning solar cell with I-V characteristics reaching those of the Yang group.

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Wolfgang Tress and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author’s dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.

Book Fabrication and Characterization of 3 D All Polymer Flexible Solar Cell

Download or read book Fabrication and Characterization of 3 D All Polymer Flexible Solar Cell written by Krishna Ashwinbhai Desai and published by . This book was released on 2011 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study investigates experimentally the fundamental photovoltaic behavior and performance of a new architecture of 'all-polymer' photovoltaic cells made of a large array of high-aspect ratio three-dimensional electrodes surrounded by a matrix of polymer photoactive material. The new 3-D architecture presented here is characterized by a significant departure from conventional photovoltaic (PV) technologies and makes unique contributions by (i) decreasing diffusion length for charge carriers through an array of high aspect-ratio 3-D electrode posts, and (ii) providing deeper optical thickness through highaspect ratio 3-D charge collectors. The high aspect-ratio 3-D electrodes which form the basis for this new architecture are patterned through MEMS based processes. By using PET (Polyethylene terephthalate) as a flexible substrate, a potentially wearable organic solar cell is enabled. In this study, the efficiency of this new architecture of charge collectors, the effects of OrgaconTM layer as anodes, effect of 3-dimensionality of electrodes, density of microelectrode array, and effect of heat treatment of the photoactive material are investigated. Here ITO (Indium Tin Oxide) is eliminated with use of a transparent conductive polymer called OrgaconTM (Agfa-Gevaert Group). Further, the contribution of several layers of photoactive material with tailored properties that is enabled by high aspect-ratio of charge collecting electrodes towards the overall efficiency is experimentally investigated.

Book Simulation of Geometry and Shadow Effects in 3D Organic Polymer Solar Cells

Download or read book Simulation of Geometry and Shadow Effects in 3D Organic Polymer Solar Cells written by and published by . This book was released on 2013 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rising inventory levels of Solar panels and new production capacity is driving solar PV prices lower and thereby, bringing solar energy closer to grid price parity. Major studies have been made in improving solar cell efficiency. A novel approach based on three-dimensional (3D) architecture for polymeric photovoltaic cells made up of an array of sub-micron and nano-pillars which not only increase the area of the light absorbing surface, but also improve the carrier collection efficiency of bulk-heterojunction organic solar cells. This study concentrates on modeling the effect of shading on 3D solar cell by varying arrangements of pillars/electrodes on a 3D organic photovoltaic cell surface. We have developed mathematical model in MATLAB which simulate the shadow effect and characterize the cell geometrically by varying aspect ratio, spacing, size, shape. A Model has been built for several shading profiles to optimize the exposed area on solar cell for different position of sun.

Book Scaling up of New Generation of 3D Flexible Organic Solar Cells

Download or read book Scaling up of New Generation of 3D Flexible Organic Solar Cells written by Kadir Toksoy and published by . This book was released on 2012 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this research, we investigate the fundamental sciences and challenges that need to be addressed in scaling up the production of Organic Solar Cell (OSC) from cleanroom environment to large-scale production. The major focuses of the study, therefore, are the determination of optimized conditions and processes for depositing the photoactive layer, anodic layer, and metal cathodic layer. Along with, this research investigates and solves the engineering and production-scale problems associated with the prototyping system. These consist of improved airbrush system, a new inert gas supply, new masking system for patterned deposition, a syringe pump for controlled flow rate of photoactive and anodic material, and a new digital pressure regulator system.

Book Organic Optoelectronic Materials

Download or read book Organic Optoelectronic Materials written by Yongfang Li and published by Springer. This book was released on 2015-05-30 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Wallace C.H. Choy and published by Springer Science & Business Media. This book was released on 2012-11-19 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.

Book Advanced Materials for Printed Flexible Electronics

Download or read book Advanced Materials for Printed Flexible Electronics written by Colin Tong and published by Springer Nature. This book was released on 2021-10-04 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to printed flexible electronics and their applications, including the basics of modern printing technologies, printable inks, performance characterization, device design, modeling, and fabrication processes. A wide range of materials used for printed flexible electronics are also covered in depth. Bridging the gap between the creation of structure and function, printed flexible electronics have been explored for manufacturing of flexible, stretchable, wearable, and conformal electronics device with conventional, 3D, and hybrid printing technologies. Advanced materials such as polymers, ceramics, nanoparticles, 2D materials, and nanocomposites have enabled a wide variety of applications, such as transparent conductive films, thin film transistors, printable solar cells, flexible energy harvesting and storage devices, electroluminescent devices, and wearable sensors. This book provides students, researchers and engineers with the information to understand the current status and future trends in printed flexible electronics, and acquire skills for selecting and using materials and additive manufacturing processes in the design of printed flexible electronics.

Book Applied mechanics reviews

Download or read book Applied mechanics reviews written by and published by . This book was released on 1948 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Factories of the Future

Download or read book Factories of the Future written by Tullio Tolio and published by Springer. This book was released on 2019-02-14 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license.This book presents results relevant in the manufacturing research field, that are mainly aimed at closing the gap between the academic investigation and the industrial application, in collaboration with manufacturing companies. Several hardware and software prototypes represent the key outcome of the scientific contributions that can be grouped into five main areas, representing different perspectives of the factory domain:1) Evolutionary and reconfigurable factories to cope with dynamic production contexts characterized by evolving demand and technologies, products and processes.2) Factories for sustainable production, asking for energy efficiency, low environmental impact products and processes, new de-production logics, sustainable logistics.3) Factories for the People who need new kinds of interactions between production processes, machines, and human beings to offer a more comfortable and stimulating working environment.4) Factories for customized products that will be more and more tailored to the final user’s needs and sold at cost-effective prices.5) High performance factories to yield the due production while minimizing the inefficiencies caused by failures, management problems, maintenance.This books is primarily targeted to academic researchers and industrial practitioners in the manufacturing domain.

Book Printable Solar Cells

    Book Details:
  • Author : Nurdan Demirci Sankir
  • Publisher : John Wiley & Sons
  • Release : 2017-04-19
  • ISBN : 1119283736
  • Pages : 578 pages

Download or read book Printable Solar Cells written by Nurdan Demirci Sankir and published by John Wiley & Sons. This book was released on 2017-04-19 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printable Solar Cells The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.

Book Perovskite Photovoltaics

Download or read book Perovskite Photovoltaics written by Aparna Thankappan and published by Academic Press. This book was released on 2018-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells

Book Organic Flexible Electronics

Download or read book Organic Flexible Electronics written by Piero Cosseddu and published by Woodhead Publishing. This book was released on 2020-09-29 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic Electronics is a novel field of electronics that has gained an incredible attention over the past few decades. New materials, device architectures and applications have been continuously introduced by the academic and also industrial communities, and novel topics have raised strong interest in such communities, as molecular doping, thermoelectrics, bioelectronics and many others.Organic Flexible Electronics is mainly divided into three sections. The first part is focused on the fundamentals of organic electronics, such as charge transport models in these systems and new approaches for the design and synthesis of novel molecules. The first section addresses the main challenges that are still open in this field, including the important role of interfaces for achieving high-performing devices or the novel approaches employed for improving reliability issues.The second part discusses the most innovative devices which have been developed in recent years, such as devices for energy harvesting, flexible batteries, high frequency circuits, and flexible devices for tattoo electronics and bioelectronics.Finally the book reviews the most important applications moving from more standard flexible back panels to wearable and textile electronics and more futuristic applications like ingestible systems. Reviews the fundamental properties and methods for optimizing organic electronic materials including chemical doping and techniques to address stability issues Discusses the most promising organic electronic devices for energy, electronics, and biomedical applications Addresses key applications of organic electronic devices in imagers, wearable electronics, bioelectronics