Download or read book Introduction to Asymptotic Methods written by David Y. Gao and published by CRC Press. This book was released on 2006-05-03 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important m
Download or read book Asymptotic Methods for Wave and Quantum Problems written by M. V. Karasev and published by American Mathematical Soc.. This book was released on 2003 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The collection consists of four papers in different areas of mathematical physics united by the intrinsic coherence of the asymptotic methods used. The papers describe both the known results and most recent achievements, as well as new concepts and ideas in mathematical analysis of quantum and wave problems. In the introductory paper ``Quantization and Intrinsic Dynamics'' a relationship between quantization of symplectic manifolds and nonlinear wave equations is described and discussed from the viewpoint of the weak asymptotics method (asymptotics in distributions) and the semiclassical approximation method. It also explains a hidden dynamic geometry that arises when using these methods. Three other papers discuss applications of asymptotic methods to the construction of wave-type solutions of nonlinear PDE's, to the theory of semiclassical approximation (in particular, the Whitham method) for nonlinear second-order ordinary differential equations, and to the study of the Schrodinger type equations whose potential wells are sufficiently shallow that the discrete spectrum contains precisely one point. All the papers contain detailed references and are oriented not only to specialists in asymptotic methods, but also to a wider audience of researchers and graduate students working in partial differential equations and mathematical physics.
Download or read book Cohomological Analysis of Partial Differential Equations and Secondary Calculus written by A. M. Vinogradov and published by American Mathematical Soc.. This book was released on 2001-10-16 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to fundamentals of a new theory, which is an analog of affine algebraic geometry for (nonlinear) partial differential equations. This theory grew up from the classical geometry of PDE's originated by S. Lie and his followers by incorporating some nonclassical ideas from the theory of integrable systems, the formal theory of PDE's in its modern cohomological form given by D. Spencer and H. Goldschmidt and differential calculus over commutative algebras (Primary Calculus). The main result of this synthesis is Secondary Calculus on diffieties, new geometrical objects which are analogs of algebraic varieties in the context of (nonlinear) PDE's. Secondary Calculus surprisingly reveals a deep cohomological nature of the general theory of PDE's and indicates new directions of its further progress. Recent developments in quantum field theory showed Secondary Calculus to be its natural language, promising a nonperturbative formulation of the theory. In addition to PDE's themselves, the author describes existing and potential applications of Secondary Calculus ranging from algebraic geometry to field theory, classical and quantum, including areas such as characteristic classes, differential invariants, theory of geometric structures, variational calculus, control theory, etc. This book, focused mainly on theoretical aspects, forms a natural dipole with Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Volume 182 in this same series, Translations of Mathematical Monographs, and shows the theory "in action".
Download or read book Operator Algebras and Geometry written by and published by American Mathematical Soc.. This book was released on with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book is aimed at researchers and graduate students working in differential topology, differential geometry, and global analysis who are interested in learning about operator algebras."--BOOK JACKET.
Download or read book Nonlinear Partial Differential Equations in Geometry and Physics written by Garth Baker and published by Birkhäuser. This book was released on 2012-12-06 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of a series of lectures hosted by the Math ematics Department of The University of Tennessee, Knoxville, March 22-24, 1995, under the title "Nonlinear Partial Differential Equations in Geometry and Physics" . While the relevance of partial differential equations to problems in differen tial geometry has been recognized since the early days of the latter subject, the idea that differential equations of differential-geometric origin can be useful in the formulation of physical theories is a much more recent one. Perhaps the earliest emergence of systems of nonlinear partial differential equations having deep geo metric and physical importance were the Einstein equations of general relativity (1915). Several basic aspects of the initial value problem for the Einstein equa tions, such as existence, regularity and stability of solutions remain prime research areas today. eighty years after Einstein's work. An even more recent development is the realization that structures originally the context of models in theoretical physics may turn out to have introduced in important geometric or topological applications. Perhaps its emergence can be traced back to 1954, with the introduction of a non-abelian version of Maxwell's equations as a model in elementary-particle physics, by the physicists C.N. Yang and R. Mills. The rich geometric structure ofthe Yang-Mills equations was brought to the attention of mathematicians through work of M.F. Atiyah, :"J. Hitchin, I.
Download or read book Conformal Field Theory and Topology written by Toshitake Kohno and published by American Mathematical Soc.. This book was released on 2002 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry and physics have been developed with a strong influence on each other. One of the most remarkable interactions between geometry and physics since 1980 has been an application of quantum field theory to topology and differential geometry. This book focuses on a relationship between two-dimensional quantum field theory and three-dimensional topology which has been studied intensively since the discovery of the Jones polynomial in the middle of the 1980s and Witten's invariantfor 3-manifolds derived from Chern-Simons gauge theory. An essential difficulty in quantum field theory comes from infinite-dimensional freedom of a system. Techniques dealing with such infinite-dimensional objects developed in the framework of quantum field theory have been influential in geometryas well. This book gives an accessible treatment for a rigorous construction of topological invariants originally defined as partition functions of fields on manifolds. The book is organized as follows: The Introduction starts from classical mechanics and explains basic background materials in quantum field theory and geometry. Chapter 1 presents conformal field theory based on the geometry of loop groups. Chapter 2 deals with the holonomy of conformal field theory. Chapter 3 treatsChern-Simons perturbation theory. The final chapter discusses topological invariants for 3-manifolds derived from Chern-Simons perturbation theory.
Download or read book Hilbert C modules written by Vladimir Markovich Manuĭlov and published by American Mathematical Soc.. This book was released on with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on lectures delivered by the authors at Moscow State University, this volume presents a detailed introduction to the theory of Hilbert $C*$-modules. Hilbert $C*$-modules provide a natural generalization of Hilbert spaces arising when the field of scalars $\mathbf{C $ is replaced by an arbitrary $C*$-algebra. The general theory of Hilbert $C*$-modules appeared more than 30 years ago in the pioneering papers of W. Paschke and M. Rieffel and has proved to be a powerful tool inoperator algebras theory, index theory of elliptic operators, $K$- and $KK$-theory, and in noncommutative geometry as a whole. Alongside these applications, the theory of Hilbert $C*$-modules is interesting on its own. In this book, the authors explain in detail the basic notions and results of thetheory, and provide a number of important examples. Some results related to the authors' research interests are also included. A large part of the book is devoted to structural results (self-duality, reflexivity) and to nonadjointable operators. Most of the book can be read with only a basic knowledge of functional analysis; however, some experience in the theory of operator algebras makes reading easier.
Download or read book Stochastic Analysis written by Ichirō Shigekawa and published by American Mathematical Soc.. This book was released on 2004 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise introduction to stochastic analysis, particularly the Malliavin calculus. A detailed description is given of all technical tools necessary to describe the theory, such as the Wiener process, the Ornstein-Uhlenbeck process, and Sobolev spaces. Applications of stochastic cal
Download or read book Nonlinear Markov Processes and Kinetic Equations written by Vassili N. Kolokoltsov and published by Cambridge University Press. This book was released on 2010-07-15 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: A nonlinear Markov evolution is a dynamical system generated by a measure-valued ordinary differential equation with the specific feature of preserving positivity. This feature distinguishes it from general vector-valued differential equations and yields a natural link with probability, both in interpreting results and in the tools of analysis. This brilliant book, the first devoted to the area, develops this interplay between probability and analysis. After systematically presenting both analytic and probabilistic techniques, the author uses probability to obtain deeper insight into nonlinear dynamics, and analysis to tackle difficult problems in the description of random and chaotic behavior. The book addresses the most fundamental questions in the theory of nonlinear Markov processes: existence, uniqueness, constructions, approximation schemes, regularity, law of large numbers and probabilistic interpretations. Its careful exposition makes the book accessible to researchers and graduate students in stochastic and functional analysis with applications to mathematical physics and systems biology.
Download or read book Analysis of Several Complex Variables written by Takeo Ōsawa and published by American Mathematical Soc.. This book was released on 2002 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: An expository account of the basic results in several complex variables that are obtained by L℗ methods.
Download or read book D modules and Microlocal Calculus written by Masaki Kashiwara and published by American Mathematical Soc.. This book was released on 2003 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Masaki Kashiwara is undoubtedly one of the masters of the theory of $D$-modules, and he has created a good, accessible entry point to the subject. The theory of $D$-modules is a very powerful point of view, bringing ideas from algebra and algebraic geometry to the analysis of systems of differential equations. It is often used in conjunction with microlocal analysis, as some of the important theorems are best stated or proved using these techniques. The theory has been used very successfully in applications to representation theory. Here, there is an emphasis on $b$-functions. These show up in various contexts: number theory, analysis, representation theory, and the geometry and invariants of prehomogeneous vector spaces. Some of the most important results on $b$-functions were obtained by Kashiwara. A hot topic from the mid '70s to mid '80s, it has now moved a bit more into the mainstream. Graduate students and research mathematicians will find that working on the subject in the two-decade interval has given Kashiwara a very good perspective for presenting the topic to the general mathematical public.
Download or read book Lectures in Mathematical Statistics written by I͡U. N. Linʹkov and published by American Mathematical Soc.. This book was released on with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is intended for the advanced study of several topics in mathematical statistics. The first part of the book is devoted to sampling theory (from one-dimensional and multidimensional distributions), asymptotic properties of sampling, parameter estimation, sufficient statistics, and statistical estimates. The second part is devoted to hypothesis testing and includes the discussion of families of statistical hypotheses that can be asymptotically distinguished. In particular,the author describes goodness-of-fit and sequential statistical criteria (Kolmogorov, Pearson, Smirnov, and Wald) and studies their main properties. The book is suitable for graduate students and researchers interested in mathematical statistics. It is useful for independent study or supplementaryreading.
Download or read book Generalized Cohomology written by Akira Kōno and published by American Mathematical Soc.. This book was released on 2006 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aims to give an exposition of generalized (co)homology theories that can be read by a group of mathematicians who are not experts in algebraic topology. This title starts with basic notions of homotopy theory, and introduces the axioms of generalized (co)homology theory. It also discusses various types of generalized cohomology theories.
Download or read book Local Fields and Their Extensions Second Edition written by Ivan B. Fesenko and published by American Mathematical Soc.. This book was released on 2002-07-17 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a modern exposition of the arithmetical properties of local fields using explicit and constructive tools and methods. It has been ten years since the publication of the first edition, and, according to Mathematical Reviews, 1,000 papers on local fields have been published during that period. This edition incorporates improvements to the first edition, with 60 additional pages reflecting several aspects of the developments in local number theory. The volume consists of four parts: elementary properties of local fields, class field theory for various types of local fields and generalizations, explicit formulas for the Hilbert pairing, and Milnor -groups of fields and of local fields. The first three parts essentially simplify, revise, and update the first edition. The book includes the following recent topics: Fontaine-Wintenberger theory of arithmetically profinite extensions and fields of norms, explicit noncohomological approach to the reciprocity map with a review of all other approaches to local class field theory, Fesenko's -class field theory for local fields with perfect residue field, simplified updated presentation of Vostokov's explicit formulas for the Hilbert norm residue symbol, and Milnor -groups of local fields. Numerous exercises introduce the reader to other important recent results in local number theory, and an extensive bibliography provides a guide to related areas.
Download or read book An Introduction to Morse Theory written by Yukio Matsumoto and published by American Mathematical Soc.. This book was released on 2002 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite-dimensional Morse theory is easier to present fundamental ideas than in infinite-dimensional Morse theory, which is theoretically more involved. However, finite-dimensional Morse theory has its own significance. This volume explains the finte-dimensional Morse theory.
Download or read book Number Theoretic Algorithms in Cryptography written by Oleg Nikolaevich Vasilenko and published by American Mathematical Soc.. This book was released on 2007 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithmic number theory is a rapidly developing branch of number theory, which, in addition to its mathematical importance, has substantial applications in computer science and cryptography. Among the algorithms used in cryptography, the following are especially important: algorithms for primality testing; factorization algorithms for integers and for polynomials in one variable; applications of the theory of elliptic curves; algorithms for computation of discrete logarithms; algorithms for solving linear equations over finite fields; and, algorithms for performing arithmetic operations on large integers. The book describes the current state of these and some other algorithms. It also contains extensive bibliography. For this English translation, additional references were prepared and commented on by the author.
Download or read book Principal Structures and Methods of Representation Theory written by Dmitriĭ Petrovich Zhelobenko and published by American Mathematical Soc.. This book was released on with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main topic of this book can be described as the theory of algebraic and topological structures admitting natural representations by operators in vector spaces. These structures include topological algebras, Lie algebras, topological groups, and Lie groups. The book is divided into three parts. Part I surveys general facts for beginners, including linear algebra and functional analysis. Part II considers associative algebras, Lie algebras, topological groups, and Lie groups,along with some aspects of ring theory and the theory of algebraic groups. The author provides a detailed account of classical results in related branches of mathematics, such as invariant integration and Lie's theory of connections between Lie groups and Lie algebras. Part III discusses semisimple Liealgebras and Lie groups, Banach algebras, and quantum groups. This is a useful text for a wide range of specialists, including graduate students and researchers working in mathematical physics and specialists interested in modern representation theory. It is suitable for independent study or supplementary reading. Also available from the AMS by this acclaimed author is Compact Lie Groups and Their Representations.