Download or read book Geometric Approaches to Quantum Field Theory written by Kieran Finn and published by Springer Nature. This book was released on 2021-10-07 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ancient Greeks believed that everything in the Universe should be describable in terms of geometry. This thesis takes several steps towards realising this goal by introducing geometric descriptions of systems such as quantum gravity, fermionic particles and the origins of the Universe itself. The author extends the applicability of previous work by Vilkovisky, DeWitt and others to include theories with spin 1⁄2 and spin 2 degrees of freedom. In addition, he introduces a geometric description of the potential term in a quantum field theory through a process known as the Eisenhart lift. Finally, the methods are applied to the theory of inflation, where they show how geometry can help answer a long-standing question about the initial conditions of the Universe. This publication is aimed at graduate and advanced undergraduate students and provides a pedagogical introduction to the exciting topic of field space covariance and the complete geometrization of quantum field theory.
Download or read book Geometric and Topological Methods for Quantum Field Theory written by Sylvie Paycha and published by American Mathematical Soc.. This book was released on 2007 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, based on lectures and short communications at a summer school in Villa de Leyva, Colombia (July 2005), offers an introduction to some recent developments in several active topics at the interface between geometry, topology and quantum field theory. It is aimed at graduate students in physics or mathematics who might want insight in the following topics (covered in five survey lectures): Anomalies and noncommutative geometry, Deformation quantisation and Poisson algebras, Topological quantum field theory and orbifolds. These lectures are followed by nine articles on various topics at the borderline of mathematics and physics ranging from quasicrystals to invariant instantons through black holes, and involving a number of mathematical tools borrowed from geometry, algebra and analysis.
Download or read book Topology Geometry and Quantum Field Theory written by Ulrike Luise Tillmann and published by Cambridge University Press. This book was released on 2004-06-28 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.
Download or read book Structural Aspects Of Quantum Field Theory And Noncommutative Geometry Second Edition In 2 Volumes written by Gerhard Grensing and published by World Scientific. This book was released on 2021-07-15 with total page 1656 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.
Download or read book Geometric Quantization in Action written by N.E. Hurt and published by Springer Science & Business Media. This book was released on 1982-12-31 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces.
Download or read book Symplectic Geometry and Quantum Mechanics written by Maurice A. de Gosson and published by Springer Science & Business Media. This book was released on 2006-08-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.
Download or read book Quantum Field Theory written by François Gelis and published by Cambridge University Press. This book was released on 2019-07-11 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern text combines fundamental principles with advanced topics and recent techniques in a rigorous and self-contained treatment of quantum field theory.Beginning with a review of basic principles, starting with quantum mechanics and special relativity, students can refresh their knowledge of elementary aspects of quantum field theory and perturbative calculations in the Standard Model. Results and tools relevant to many applications are covered, including canonical quantization, path integrals, non-Abelian gauge theories, and the renormalization group. Advanced topics are explored, with detail given on effective field theories, quantum anomalies, stable extended field configurations, lattice field theory, and field theory at a finite temperature or in the strong field regime. Two chapters are dedicated to new methods for calculating scattering amplitudes (spinor-helicity, on-shell recursion, and generalized unitarity), equipping students with practical skills for research. Accessibly written, with numerous worked examples and end-of-chapter problems, this is an essential text for graduate students. The breadth of coverage makes it an equally excellent reference for researchers.
Download or read book Noncommutative Geometry Quantum Fields and Motives written by Alain Connes and published by American Mathematical Soc.. This book was released on 2019-03-13 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Download or read book Connections In Classical And Quantum Field Theory written by Luigi Mangiarotti and published by World Scientific. This book was released on 2000-04-28 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometrical notions and methods play an important role in both classical and quantum field theory, and a connection is a deep structure which apparently underlies the gauge-theoretical models in field theory and mechanics. This book is an encyclopaedia of modern geometric methods in theoretical physics. It collects together the basic mathematical facts about various types of connections, and provides a detailed exposition of relevant physical applications. It discusses the modern issues concerning the gauge theories of fundamental fields. The authors have tried to give all the necessary mathematical background, thus making the book self-contained.This book should be useful to graduate students, physicists and mathematicians who are interested in the issue of deep interrelations between theoretical physics and geometry.
Download or read book Towards the Mathematics of Quantum Field Theory written by Frédéric Paugam and published by Springer Science & Business Media. This book was released on 2014-02-20 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ambitious and original book sets out to introduce to mathematicians (even including graduate students ) the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in use. This in turn promotes the interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, though mathematicians are the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras.
Download or read book Mathematical Foundations Of Quantum Field Theory written by Albert Schwarz and published by World Scientific. This book was released on 2020-04-15 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks.In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book.
Download or read book Quantum Field Theory for Mathematicians written by Robin Ticciati and published by Cambridge University Press. This book was released on 1999-06-13 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: This should be a useful reference for anybody with an interest in quantum theory.
Download or read book Gauge Field Theory in Natural Geometric Language written by Daniel Canarutto and published by Oxford University Press. This book was released on 2020-10-06 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gauge Field theory in Natural Geometric Language addresses the need to clarify basic mathematical concepts at the crossroad between gravitation and quantum physics. Selected mathematical and theoretical topics are exposed within a brief, integrated approach that exploits standard and non-standard notions, as well as recent advances, in a natural geometric language in which the role of structure groups can be regarded as secondary even in the treatment of the gauge fields themselves. In proposing an original bridge between physics and mathematics, this text will appeal not only to mathematicians who wish to understand some of the basic ideas involved in quantum particle physics, but also to physicists who are not satisfied with the usual mathematical presentations of their field.
Download or read book The Geometry and Physics of Knots written by Michael Francis Atiyah and published by Cambridge University Press. This book was released on 1990-08-23 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes deal with an area that lies at the crossroads of mathematics and physics and rest primarily on the pioneering work of Vaughan Jones and Edward Witten, who related polynomial invariants of knots to a topological quantum field theory in 2+1 dimensions.
Download or read book Quantum Riemannian Geometry written by Edwin J. Beggs and published by Springer Nature. This book was released on 2020-01-31 with total page 826 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive account of a modern generalisation of differential geometry in which coordinates need not commute. This requires a reinvention of differential geometry that refers only to the coordinate algebra, now possibly noncommutative, rather than to actual points. Such a theory is needed for the geometry of Hopf algebras or quantum groups, which provide key examples, as well as in physics to model quantum gravity effects in the form of quantum spacetime. The mathematical formalism can be applied to any algebra and includes graph geometry and a Lie theory of finite groups. Even the algebra of 2 x 2 matrices turns out to admit a rich moduli of quantum Riemannian geometries. The approach taken is a `bottom up’ one in which the different layers of geometry are built up in succession, starting from differential forms and proceeding up to the notion of a quantum `Levi-Civita’ bimodule connection, geometric Laplacians and, in some cases, Dirac operators. The book also covers elements of Connes’ approach to the subject coming from cyclic cohomology and spectral triples. Other topics include various other cohomology theories, holomorphic structures and noncommutative D-modules. A unique feature of the book is its constructive approach and its wealth of examples drawn from a large body of literature in mathematical physics, now put on a firm algebraic footing. Including exercises with solutions, it can be used as a textbook for advanced courses as well as a reference for researchers.
Download or read book Geometry and Quantum Field Theory written by Daniel S. Freed and published by American Mathematical Soc.. This book was released on 1995 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first title in a new series, this book explores topics from classical and quantum mechanics and field theory. The material is presented at a level between that of a textbook and research papers making it ideal for graduate students. The book provides an entree into a field that promises to remain exciting and important for years to come.
Download or read book Quantum Mechanics in the Geometry of Space Time written by Roger Boudet and published by Springer Science & Business Media. This book was released on 2011-06-13 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the “number i” in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered. The presentation of real quantum electromagnetism is expressed in an addendum. The book covers both the use of the complex and the real languages and allows the reader acquainted with the first language to make a step by step translation to the second one.