EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometric and Topological Invariants of Elliptic Operators

Download or read book Geometric and Topological Invariants of Elliptic Operators written by Jerome Kaminker and published by American Mathematical Soc.. This book was released on 1990 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS-IMS-SIAM Summer Research Conference on ``Geometric and Topological Invariants of Elliptic Operators,'' held in August 1988 at Bowdoin College. Some of the themes covered at the conference and appearing in the articles are: the use of more sophisticated asymptotic methods to obtain index theorems, the study of the $\eta$ invariant and analytic torsion, and index theory on open manifolds and foliated manifolds. The current state of noncommutative differential geometry, as well as operator algebraic and $K$-theoretic methods, are also presented in several the articles. This book will be useful to researchers in index theory, operator algebras, foliations, and mathematical physics. Topologists and geometers are also likely to find useful the view the book provides of recent work in this area. In addition, because of the expository nature of several of the articles, it will be useful to graduate students interested in working in these areas.

Book Analysis  Geometry and Topology of Elliptic Operators

Download or read book Analysis Geometry and Topology of Elliptic Operators written by Bernhelm Booss and published by World Scientific. This book was released on 2006 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern theory of elliptic operators, or simply elliptic theory, has been shaped by the Atiyah-Singer Index Theorem created 40 years ago. Reviewing elliptic theory over a broad range, 32 leading scientists from 14 different countries present recent developments in topology; heat kernel techniques; spectral invariants and cutting and pasting; noncommutative geometry; and theoretical particle, string and membrane physics, and Hamiltonian dynamics.The first of its kind, this volume is ideally suited to graduate students and researchers interested in careful expositions of newly-evolved achievements and perspectives in elliptic theory. The contributions are based on lectures presented at a workshop acknowledging Krzysztof P Wojciechowski's work in the theory of elliptic operators.

Book Analysis  Geometry And Topology Of Elliptic Operators  Papers In Honor Of Krzysztof P Wojciechowski

Download or read book Analysis Geometry And Topology Of Elliptic Operators Papers In Honor Of Krzysztof P Wojciechowski written by Matthias Lesch and published by World Scientific. This book was released on 2006-04-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern theory of elliptic operators, or simply elliptic theory, has been shaped by the Atiyah-Singer Index Theorem created 40 years ago. Reviewing elliptic theory over a broad range, 32 leading scientists from 14 different countries present recent developments in topology; heat kernel techniques; spectral invariants and cutting and pasting; noncommutative geometry; and theoretical particle, string and membrane physics, and Hamiltonian dynamics.The first of its kind, this volume is ideally suited to graduate students and researchers interested in careful expositions of newly-evolved achievements and perspectives in elliptic theory. The contributions are based on lectures presented at a workshop acknowledging Krzysztof P Wojciechowski's work in the theory of elliptic operators.

Book An Invitation To Noncommutative Geometry

Download or read book An Invitation To Noncommutative Geometry written by Matilde Marcolli and published by World Scientific. This book was released on 2008-02-11 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.

Book Noncommutative Geometry and Particle Physics

Download or read book Noncommutative Geometry and Particle Physics written by Walter D. van Suijlekom and published by Springer. This book was released on 2014-07-21 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.

Book Noncommutative Geometry and Global Analysis

Download or read book Noncommutative Geometry and Global Analysis written by Henri Moscovici and published by American Mathematical Soc.. This book was released on 2011 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume represents the proceedings of the conference on Noncommutative Geometric Methods in Global Analysis, held in honor of Henri Moscovici, from June 29-July 4, 2009, in Bonn, Germany. Henri Moscovici has made a number of major contributions to noncommutative geometry, global analysis, and representation theory. This volume, which includes articles by some of the leading experts in these fields, provides a panoramic view of the interactions of noncommutative geometry with a variety of areas of mathematics. It focuses on geometry, analysis and topology of manifolds and singular spaces, index theory, group representation theory, connections of noncommutative geometry with number theory and arithmetic geometry, Hopf algebras and their cyclic cohomology.

Book Handbook of Global Analysis

Download or read book Handbook of Global Analysis written by Demeter Krupka and published by Elsevier. This book was released on 2011-08-11 with total page 1243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents

Book Elliptic Theory and Noncommutative Geometry

Download or read book Elliptic Theory and Noncommutative Geometry written by Vladimir E. Nazaykinskiy and published by Springer Science & Business Media. This book was released on 2008-06-30 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive yet concise book deals with nonlocal elliptic differential operators. These are operators whose coefficients involve shifts generated by diffeomorphisms of the manifold on which the operators are defined. This is the first book featuring a consistent application of methods of noncommutative geometry to the index problem in the theory of nonlocal elliptic operators. To make the book self-contained, the authors have included necessary geometric material.

Book Vision Geometry

    Book Details:
  • Author : Robert A. Melter
  • Publisher : American Mathematical Soc.
  • Release : 1991
  • ISBN : 082185125X
  • Pages : 254 pages

Download or read book Vision Geometry written by Robert A. Melter and published by American Mathematical Soc.. This book was released on 1991 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its genesis more than thirty-five years ago, the field of computer vision has been known by various names, including pattern recognitions, image analysis, and image understanding. The central problem of computer vision is obtaining descriptive information by computer analysis of images of a scene. Together with the related fields of image processing and computer graphics, it has become an established discipline at the interface between computer science and electrical engineering. This volume contains fourteen papers presented at the AMS Special Session on Geometry Related to Computer Vision, held in Hoboken, New Jersey in Ooctober 1989. This book makes the results presented at the Special Session, which previously had been available only in the computer science literature, more widely available within the mathematical sciences community. Geometry plays a major role in computer vision since scene descriptions always involve geometrical properties of, and relations among, the objects of surfaces in the scene. The papers in this book provide a good sampling of geometric problems connected with computer vision. They deal with digital lines and curves, polygons, shape decompositions, digital connectedness and surfaces, digital metrics, and generalizations to higher-dimensional and graph-structured "spaces". Aimed at computer scientists specializing in image processing, computer vision, and pattern recognition - as well as mathematicians interested in applications to computer science - this book will provide readers with a view of how geometry is currently being applied to problems in computer vision.

Book Algebraic Geometry  Sundance 1988

Download or read book Algebraic Geometry Sundance 1988 written by Brian Harbourne and published by American Mathematical Soc.. This book was released on 1991 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the NSF-CBMS Regional Conference on Algebraic Geometry, held in Sundance, Utah in July 1988. The conference focused on algebraic curves and related varieties. Some of the papers collected here represent lectures delivered at the conference, some report on research done during the conference, while others describe related work carried out elsewhere.

Book Geometry of Foliations

Download or read book Geometry of Foliations written by Philippe Tondeur and published by Birkhäuser. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics in this survey volume concern research done on the differential geom etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de voted to Hodge theory for the transversal Laplacian and applications of the heat equation method to Riemannian foliations. Chapter 9 on Lie foliations is a prepa ration for the statement of Molino's Structure Theorem for Riemannian foliations in Chapter 10. Some aspects of the spectral theory for Riemannian foliations are discussed in Chapter 11. Connes' point of view of foliations as examples of non commutative spaces is briefly described in Chapter 12. Chapter 13 applies ideas of Riemannian foliation theory to an infinite-dimensional context. Aside from the list of references on Riemannian foliations (items on this list are referred to in the text by [ ]), we have included several appendices as follows. Appendix A is a list of books and surveys on particular aspects of foliations. Appendix B is a list of proceedings of conferences and symposia devoted partially or entirely to foliations. Appendix C is a bibliography on foliations, which attempts to be a reasonably complete list of papers and preprints on the subject of foliations up to 1995, and contains approximately 2500 titles.

Book Integral Geometry and Tomography

Download or read book Integral Geometry and Tomography written by Eric Grinberg and published by American Mathematical Soc.. This book was released on 1990 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains the proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Integral Geometry and Tomography, held in June 1989 at Humboldt State University in Arcata, California. This book features articles that range over such diverse areas as combinatorics, geometric inequalities, micro-local analysis, group theory, and harmonic analysis.

Book Operator Theory  Operator Algebras and Their Interactions with Geometry and Topology

Download or read book Operator Theory Operator Algebras and Their Interactions with Geometry and Topology written by Raul E Curto and published by Springer Nature. This book was released on 2020-12-12 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the proceeding of the International Workshop on Operator Theory and Applications (IWOTA) held in July 2018 in Shanghai, China. It consists of original papers, surveys and expository articles in the broad areas of operator theory, operator algebras and noncommutative topology. Its goal is to give graduate students and researchers a relatively comprehensive overview of the current status of research in the relevant fields. The book is also a special volume dedicated to the memory of Ronald G. Douglas who passed away on February 27, 2018 at the age of 79. Many of the contributors are Douglas’ students and past collaborators. Their articles attest and commemorate his life-long contribution and influence to these fields.

Book Superstrings  Geometry  Topology  and  C    algebras

Download or read book Superstrings Geometry Topology and C algebras written by Robert S. Doran and published by American Mathematical Soc.. This book was released on 2010-10-13 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of an NSF-CBMS Conference held at Texas Christian University in Fort Worth, Texas, May 18-22, 2009. The papers, written especially for this volume by well-known mathematicians and mathematical physicists, are an outgrowth of the talks presented at the conference. Topics examined are highly interdisciplinary and include, among many other things, recent results on D-brane charges in $K$-homology and twisted $K$-homology, Yang-Mills gauge theory and connections with non-commutative geometry, Landau-Ginzburg models, $C^*$-algebraic non-commutative geometry and ties to quantum physics and topology, the rational homotopy type of the group of unitary elements in an Azumaya algebra, and functoriality properties in the theory of $C^*$-crossed products and fixed point algebras for proper actions. An introduction, written by Jonathan Rosenberg, provides an instructive overview describing common themes and how the various papers in the volume are interrelated and fit together. The rich diversity of papers appearing in the volume demonstrates the current interplay between superstring theory, geometry/topology, and non-commutative geometry. The book will be of interest to graduate students, mathematicians, mathematical physicists, and researchers working in these areas.

Book Arithmetic Groups and Their Generalizations

Download or read book Arithmetic Groups and Their Generalizations written by Lizhen Ji and published by American Mathematical Soc.. This book was released on 2008 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n, \mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA.Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: ...the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come.(AMSIP/43.

Book Noncommutative Geometry

Download or read book Noncommutative Geometry written by Alain Connes and published by Academic Press. This book was released on 1995-01-17 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields. - First full treatment of the subject and its applications - Written by the pioneer of this field - Broad applications in mathematics - Of interest across most fields - Ideal as an introduction and survey - Examples treated include: - the space of Penrose tilings - the space of leaves of a foliation - the space of irreducible unitary representations of a discrete group - the phase space in quantum mechanics - the Brillouin zone in the quantum Hall effect - A model of space time

Book C    Algebras and Elliptic Operators in Differential Topology

Download or read book C Algebras and Elliptic Operators in Differential Topology written by I_U_ri_ Petrovich Solov_‘v Evgeni_ Vadimovich Troit_s_ki_ and published by American Mathematical Soc.. This book was released on 2000-10-03 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to present some applications of functional analysis and the theory of differential operators to the investigation of topological invariants of manifolds. The main topological application discussed in the book concerns the problem of the description of homotopy-invariant rational Pontryagin numbers of non-simply connected manifolds and the Novikov conjecture of homotopy invariance of higher signatures. The definition of higher signatures and the formulation of the Novikov conjecture are given in Chapter 3. In this chapter, the authors also give an overview of different approaches to the proof of the Novikov conjecture. First, there is the Mishchenko symmetric signature and the generalized Hirzebruch formulae and the Mishchenko theorem of homotopy invariance of higher signatures for manifolds whose fundamental groups have a classifying space, being a complete Riemannian non-positive curvature manifold. Then the authors present Solovyov's proof of the Novikov conjecture for manifolds with fundamental group isomorphic to a discrete subgroup of a linear algebraic group over a local field, based on the notion of the Bruhat-Tits building. Finally, the authors discuss the approach due to Kasparov based on the operator $KK$-theory and another proof of the Mishchenko theorem. In Chapter 4, they outline the approach to the Novikov conjecture due to Connes and Moscovici involving cyclic homology. That allows one to prove the conjecture in the case when the fundamental group is a (Gromov) hyperbolic group. The text provides a concise exposition of some topics from functional analysis (for instance, $C^*$-Hilbert modules, $K$-theory or $C^*$-bundles, Hermitian $K$-theory, Fredholm representations, $KK$-theory, and functional integration) from the theory of differential operators (pseudodifferential calculus and Sobolev chains over $C^*$-algebras), and from differential topology (characteristic classes). The book explains basic ideas of the subject and can serve as a course text for an introduction to the study of original works and special monographs.