EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometric Analysis of Quasilinear Inequalities on Complete Manifolds

Download or read book Geometric Analysis of Quasilinear Inequalities on Complete Manifolds written by Bruno Bianchini and published by Springer Nature. This book was released on 2021-01-18 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the influence of geometry on the qualitative behaviour of solutions of quasilinear PDEs on Riemannian manifolds. Motivated by examples arising, among others, from the theory of submanifolds, the authors study classes of coercive elliptic differential inequalities on domains of a manifold M with very general nonlinearities depending on the variable x, on the solution u and on its gradient. The book highlights the mean curvature operator and its variants, and investigates the validity of strong maximum principles, compact support principles and Liouville type theorems. In particular, it identifies sharp thresholds involving curvatures or volume growth of geodesic balls in M to guarantee the above properties under appropriate Keller-Osserman type conditions, which are investigated in detail throughout the book, and discusses the geometric reasons behind the existence of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau’s Hessian and Laplacian principles and subsequent improvements.

Book Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs

Download or read book Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs written by Emanuel Indrei and published by American Mathematical Society. This book was released on 2023-01-09 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the virtual conference on Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs, held from February 28–March 1, 2021, and hosted by Purdue University, West Lafayette, IN. The mathematical content of this volume is at the intersection of viscosity theory, Fourier analysis, mass transport theory, fractional elliptic theory, and geometric analysis. The reader will encounter, among others, the following topics: the principal-agent problem; Maxwell's equations; Liouville-type theorems for fully nonlinear elliptic equations; a doubly monotone flow for constant width bodies; and the edge dislocations problem for crystals that describes the equilibrium configurations by a nonlocal fractional Laplacian equation.

Book The  AB  Program in Geometric Analysis  Sharp Sobolev Inequalities and Related Problems

Download or read book The AB Program in Geometric Analysis Sharp Sobolev Inequalities and Related Problems written by Olivier Druet and published by American Mathematical Soc.. This book was released on 2002 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: Function theory and Sobolev inequalities have been the target of investigation for many years. Sharp constants in these inequalities constitute a critical tool in geometric analysis. The $AB$ programme is concerned with sharp Sobolev inequalities on compact Riemannian manifolds. This text summarizes the results of contemporary research and gives an up-to-date report on the field.

Book Analysis and Partial Differential Equations on Manifolds  Fractals and Graphs

Download or read book Analysis and Partial Differential Equations on Manifolds Fractals and Graphs written by Alexander Grigor'yan and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-01-18 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.

Book Nonlinear Analysis on Manifolds  Sobolev Spaces and Inequalities

Download or read book Nonlinear Analysis on Manifolds Sobolev Spaces and Inequalities written by Emmanuel Hebey and published by American Mathematical Soc.. This book was released on 2000-10-27 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers an expanded version of lectures given at the Courant Institute on the theory of Sobolev spaces on Riemannian manifolds. ``Several surprising phenomena appear when studying Sobolev spaces on manifolds,'' according to the author. ``Questions that are elementary for Euclidean space become challenging and give rise to sophisticated mathematics, where the geometry of the manifold plays a central role.'' The volume is organized into nine chapters. Chapter 1 offers a brief introduction to differential and Riemannian geometry. Chapter 2 deals with the general theory of Sobolev spaces for compact manifolds. Chapter 3 presents the general theory of Sobolev spaces for complete, noncompact manifolds. Best constants problems for compact manifolds are discussed in Chapters 4 and 5. Chapter 6 presents special types of Sobolev inequalities under constraints. Best constants problems for complete noncompact manifolds are discussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities. And Chapter 9 discusses the influence of symmetries on Sobolev embeddings. An appendix offers brief notes on the case of manifolds with boundaries. This topic is a field undergoing great development at this time. However, several important questions remain open. So a substantial part of the book is devoted to the concept of best constants, which appeared to be crucial for solving limiting cases of some classes of PDEs. The volume is highly self-contained. No familiarity is assumed with differentiable manifolds and Riemannian geometry, making the book accessible to a broad audience of readers, including graduate students and researchers.

Book Geometric Analysis

    Book Details:
  • Author : Jingyi Chen
  • Publisher : Springer Nature
  • Release : 2020-04-10
  • ISBN : 3030349535
  • Pages : 615 pages

Download or read book Geometric Analysis written by Jingyi Chen and published by Springer Nature. This book was released on 2020-04-10 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.

Book Convex Analysis and Nonlinear Geometric Elliptic Equations

Download or read book Convex Analysis and Nonlinear Geometric Elliptic Equations written by Ilya J. Bakelman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.

Book Contemporary Research in Elliptic PDEs and Related Topics

Download or read book Contemporary Research in Elliptic PDEs and Related Topics written by Serena Dipierro and published by Springer. This book was released on 2019-07-12 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.

Book The Ricci Flow  Techniques and Applications

Download or read book The Ricci Flow Techniques and Applications written by Bennett Chow and published by American Mathematical Soc.. This book was released on 2010-04-21 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Ricci flow uses methods from analysis to study the geometry and topology of manifolds. With the third part of their volume on techniques and applications of the theory, the authors give a presentation of Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject, with an emphasis on the geometric and analytic aspects. The topics include Perelman's entropy functional, point picking methods, aspects of Perelman's theory of $\kappa$-solutions including the $\kappa$-gap theorem, compactness theorem and derivative estimates, Perelman's pseudolocality theorem, and aspects of the heat equation with respect to static and evolving metrics related to Ricci flow. In the appendices, we review metric and Riemannian geometry including the space of points at infinity and Sharafutdinov retraction for complete noncompact manifolds with nonnegative sectional curvature. As in the previous volumes, the authors have endeavored, as much as possible, to make the chapters independent of each other. The book makes advanced material accessible to graduate students and nonexperts. It includes a rigorous introduction to some of Perelman's work and explains some technical aspects of Ricci flow useful for singularity analysis. The authors give the appropriate references so that the reader may further pursue the statements and proofs of the various results.

Book Geometric Inequalities

    Book Details:
  • Author : Yurii D. Burago
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-14
  • ISBN : 3662074419
  • Pages : 346 pages

Download or read book Geometric Inequalities written by Yurii D. Burago and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: A 1988 classic, covering Two-dimensional Surfaces; Domains on the Plane and on Surfaces; Brunn-Minkowski Inequality and Classical Isoperimetric Inequality; Isoperimetric Inequalities for Various Definitions of Area; and Inequalities Involving Mean Curvature.

Book Maximum Principles and Geometric Applications

Download or read book Maximum Principles and Geometric Applications written by Luis J. Alías and published by Springer. This book was released on 2016-02-13 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.

Book Some Nonlinear Problems in Riemannian Geometry

Download or read book Some Nonlinear Problems in Riemannian Geometry written by Thierry Aubin and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, geometric and topological methods. It explores important geometric problems that are of interest to many mathematicians and scientists but have only recently been partially solved.

Book Noncompact Problems at the Intersection of Geometry  Analysis  and Topology

Download or read book Noncompact Problems at the Intersection of Geometry Analysis and Topology written by Abbas Bahri and published by American Mathematical Soc.. This book was released on 2004 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume contains articles from the conference held at Rutgers University in honor of Haim Brezis and Felix Browder, two mathematicians who have had a profound impact on partial differential equations, functional analysis, and geometry. Mathematicians attending the conference had interests in noncompact variational problems, pseudo-holomorphic curves, singular and smooth solutions to problems admitting a conformal (or some group) invariance, Sobolev spaces on manifolds, and configuration spaces. One day of the proceedings was devoted to Einstein equations and related topics. Contributors to the volume include, among others, Sun-Yung A. Chang, Luis A. Caffarelli, Carlos E. Kenig, and Gang Tian. The material is suitable for graduate students and researchers interested in problems in analysis and differential equations on noncompact manifolds.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2005 with total page 1884 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometric Analysis and PDEs

Download or read book Geometric Analysis and PDEs written by Matthew J. Gursky and published by Springer Science & Business Media. This book was released on 2009-06-26 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains lecture notes on key topics in geometric analysis, a growing mathematical subject which uses analytical techniques, mostly of partial differential equations, to treat problems in differential geometry and mathematical physics.

Book Handbook of Differential Equations  Stationary Partial Differential Equations

Download or read book Handbook of Differential Equations Stationary Partial Differential Equations written by Michel Chipot and published by Elsevier. This book was released on 2008-03-11 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of self contained state-of-the art surveys. The authors have made an effort to achieve readability for mathematicians and scientists from other fields, for this series of handbooks to be a new reference for research, learning and teaching. - Written by well-known experts in the field - Self contained volume in series covering one of the most rapid developing topics in mathematics - Informed and thoroughly updated for students, academics and researchers

Book Isometric Embedding of Riemannian Manifolds in Euclidean Spaces

Download or read book Isometric Embedding of Riemannian Manifolds in Euclidean Spaces written by Qing Han and published by American Mathematical Soc.. This book was released on 2006 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.