EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Genetic Studies on Yield  Yield Components and Some Morpho physiological Traits Associated with Drought Tolerance in Maize   Zea Mays L

Download or read book Genetic Studies on Yield Yield Components and Some Morpho physiological Traits Associated with Drought Tolerance in Maize Zea Mays L written by V. Kumar and published by . This book was released on 1996 with total page 6055 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Genetic Analysis of Yield Yield Components and Some Morpho physiological Traits Related to Drought Resistance in Two Heterozygeous Populations of Maize  zea Mays L

Download or read book Genetic Analysis of Yield Yield Components and Some Morpho physiological Traits Related to Drought Resistance in Two Heterozygeous Populations of Maize zea Mays L written by H. M. Arefi and published by . This book was released on 1993 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Drought Stress in Maize  Zea mays L

Download or read book Drought Stress in Maize Zea mays L written by Muhammad Aslam and published by Springer. This book was released on 2015-11-20 with total page 79 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on early germination, one of maize germplasm most important strategies for adapting to drought-induced stress. Some genotypes have the ability to adapt by either reducing water losses or by increasing water uptake. Drought tolerance is also an adaptive strategy that enables crop plants to maintain their normal physiological processes and deliver higher economical yield despite drought stress. Several processes are involved in conferring drought tolerance in maize: the accumulation of osmolytes or antioxidants, plant growth regulators, stress proteins and water channel proteins, transcription factors and signal transduction pathways. Drought is one of the most detrimental forms of abiotic stress around the world and seriously limits the productivity of agricultural crops. Maize, one of the leading cereal crops in the world, is sensitive to drought stress. Maize harvests are affected by drought stress at different growth stages in different regions. Numerous events in the life of maize crops can be affected by drought stress: germination potential, seedling growth, seedling stand establishment, overall growth and development, pollen and silk development, anthesis silking interval, pollination, and embryo, endosperm and kernel development. Though every maize genotype has the ability to avoid or withstand drought stress, there is a concrete need to improve the level of adaptability to drought stress to address the global issue of food security. The most common biological strategies for improving drought stress resistance include screening available maize germplasm for drought tolerance, conventional breeding strategies, and marker-assisted and genomic-assisted breeding and development of transgenic maize. As a comprehensive understanding of the effects of drought stress, adaptive strategies and potential breeding tools is the prerequisite for any sound breeding plan, this brief addresses these aspects.

Book Morpho Physiological Mechanisms of Maize for Drought Tolerance

Download or read book Morpho Physiological Mechanisms of Maize for Drought Tolerance written by Shalim Uddin and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maize is one of the mostly consumed grains in the world. It possesses a greater potentiality of being an alternative to rice and wheat in the near future. In field condition, maize encounters abiotic stresses like salinity, drought, water logging, cold, heat, etc. Physiology and production of maize are largely affected by drought. Drought has become a prime cause of agricultural disaster because of the major occurrence records of the last few decades. It leads to immense losses in plant growth (plant height and stem), water relations (relative water content), gas exchange (photosynthesis, stomatal conductance, and transpiration rate), and nutrient levels in maize. To mitigate the effect of stress, plant retreats by using multiple morphological, molecular, and physiological mechanisms. Maize alters its physiological processes like photosynthesis, oxidoreductase activities, carbohydrate metabolism, nutrient metabolism, and other drought-responsive pathways in response to drought. Synthesis of some chemicals like proline, abscisic acid (ABA), different phenolic compounds, etc. helps to fight against stress. Inoculation of plant growth-promoting rhizobacteria (PGPR) can result to the gene expression involved in the biosynthesis of abscisic acid which also helps to resist drought. Moreover, adaptation to drought and heat stress is positively influenced by the activity of chaperone proteins and proteases, protein that responds to ethylene and ripening. Some modifications generated by clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 are able to improve maize yield in drought. Forward and reverse genetics and functional and comparative genomics are being implemented now to overcome stress conditions like drought. Maize response to drought is a multifarious physiological and biochemical process. Applying data synthesis approach, this study aims toward better demonstration of its consequences to provide critical information on maize tolerance along with minimizing yield loss.

Book Abiotic Stress Alleviation in Plants  Morpho Physiological and Molecular Aspects

Download or read book Abiotic Stress Alleviation in Plants Morpho Physiological and Molecular Aspects written by Diaa Abd El Moneim and published by Frontiers Media SA. This book was released on 2023-10-27 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plants are constantly exposed to changing environmental conditions. Abiotic stresses cause adverse effects on plant growth, development, survival, and yield. It is essential to improve plant responses to such environmental conditions to achieve sustainable crop growth, development, and productivity. The activation of plant stress signaling mechanisms is crucial to address the adverse impacts of environmental factors on plant growth and productivity. Phytoprotectants, including signaling molecules, play crucial roles in the activation of plant physiological and molecular mechanisms to withstand the negative effects of abiotic stress on plants. Investigation of physiological, biochemical, and metabolic pathways associated with plant adaptation to abiotic stress will help identify the key players involved in plant abiotic stress tolerance mechanisms. The sensing, signaling, and gene regulatory mechanisms that help plants cope with abiotic stress must be fully explored.

Book Bioinformatics in Agriculture

Download or read book Bioinformatics in Agriculture written by Pradeep Sharma and published by Academic Press. This book was released on 2022-04-28 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinformatics in Agriculture: Next Generation Sequencing Era is a comprehensive volume presenting an integrated research and development approach to the practical application of genomics to improve agricultural crops. Exploring both the theoretical and applied aspects of computational biology, and focusing on the innovation processes, the book highlights the increased productivity of a translational approach. Presented in four sections and including insights from experts from around the world, the book includes: Section I: Bioinformatics and Next Generation Sequencing Technologies; Section II: Omics Application; Section III: Data mining and Markers Discovery; Section IV: Artificial Intelligence and Agribots. Bioinformatics in Agriculture: Next Generation Sequencing Era explores deep sequencing, NGS, genomic, transcriptome analysis and multiplexing, highlighting practices forreducing time, cost, and effort for the analysis of gene as they are pooled, and sequenced. Readers will gain real-world information on computational biology, genomics, applied data mining, machine learning, and artificial intelligence. This book serves as a complete package for advanced undergraduate students, researchers, and scientists with an interest in bioinformatics. Discusses integral aspects of molecular biology and pivotal tool sfor molecular breeding Enables breeders to design cost-effective and efficient breeding strategies Provides examples ofinnovative genome-wide marker (SSR, SNP) discovery Explores both the theoretical and practical aspects of computational biology with focus on innovation processes Covers recent trends of bioinformatics and different tools and techniques

Book Drought Tolerance Traits in Maize  Zea Mays  at the Early Vegetative Growth Stage

Download or read book Drought Tolerance Traits in Maize Zea Mays at the Early Vegetative Growth Stage written by Abdalla I. Ibrahim and published by . This book was released on 2017 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early seedling vigor and juvenile vegetative growth are important traits that allow the strong establishment of plants and access to nutrients and water, providing competition against weeds, and allowing mechanical cultivation in production systems that do not use herbicides. Drought stress at this early growth stage may be lethal or damaging. We used to the plant Digital Biomass as predicted from digital images to track plant growth under both well-watered and water-stressed conditions. To achieve these goals, we developed a manual imaging system that allowed us to track the plant growth over a period of 32 days. We imaged 30,36 plants representing 449 inbred lines daily from 13 to 32 days after planting with both a top and a side image. The drought treatment started 23 days after planting by completely withholding water from the water-stress treatment. Using Integrated Analysis Platform (IAP) software, we extracted 137 traits from the images including plant architectural traits and color traits. Phenotypic analysis of several traits showed variability across inbreds. Digital Biomass, for example, showed a great variability across inbreds with a 6.6-fold difference at the beginning of the experiment. Digital Biomass, estimated from the top and side images, was shown to be a good measure of plant vigor and strongly correlated with plant shoot weight at harvest. Vigorous seedling utilized more water, reflecting their ability to take advantage of available resources. The value of image-based traits of young plants was evaluated as a predictive tool for adult phenotypes grown in the field. Weak to moderate correlations were obtained between Digital Biomass at the seedling stage, with r-squared values of -0.35, -0.31 for GDD to Anthesis, and GDD to Silking respectively. The correlation between early maize growth and flowering time may suggest a common genetic control of growth and development of both stages with some possible genes with pleiotropic effects. To identify genomic regions associated with the several phenotypic traits, we utilized a dataset of 436,576 SNP markers to conduct Genome-wide Association (GWAS) using the GAPIT package in R. Several candidate genes were identified for growth rate and total leaf area at specific growth stages, as well as for other correlated traits. GWAS of image-derived plant color traits detected genes associated with plant pigments such as anthocyanin and chlorophyll, which confirms earlier reports on the utility of plant imaging in identifying plant pigments. We wanted to test whether growth, as measured by Digital Biomass, was controlled by a fixed or a dynamic set of genes, so we carried out GWAS analysis of Digital Biomass for each day as a separate phenotype. Results have shown that variation for early vegetative growth in maize is controlled by a dynamic set of genes over time, highlighting the importance of repeated measurement over time in GWAS and QTL studies designed to characterize the genetic architecture of plant development. The analysis of the drought-stressed plants showed variability in different drought tolerance traits ranging from 1.2 to 12.2-fold difference. The several measured traits included traits such as 1) leaf expansion sensitivity to water content and traits related to the ability to recover after drought such as 2) surviving green tissue after drought stress, 3) water use efficiency, and 4) growth rate after recovery with. No or weak correlations were found between the plant's ability to tolerate drought and its ability to recover. Photosynthesis Efficiency measured as Fv/Fm on a subset of 140 plants at three time-points during drought stress, showed that photosynthetic efficiency is less sensitive to drought stress than leaf growth. The candidate genes identified in this study, as well as correlations with field agronomic traits, may provide an insight that helps future understanding of the genetic control of biomass-related traits under both well-watered and drought stress conditions.

Book Investigation on Drought Tolerance in Maize  Zea Mays L   A Genetic and Biochemical Appraisal

Download or read book Investigation on Drought Tolerance in Maize Zea Mays L A Genetic and Biochemical Appraisal written by S. R. Pinnamaneni and published by . This book was released on 1998 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Crop physiological responses to abiotic stress

Download or read book Crop physiological responses to abiotic stress written by Rangjian Qiu and published by Frontiers Media SA. This book was released on 2024-01-03 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Drought Stress Tolerance in Plants  Vol 1

Download or read book Drought Stress Tolerance in Plants Vol 1 written by Mohammad Anwar Hossain and published by Springer. This book was released on 2016-05-25 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.

Book Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses

Download or read book Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses written by Monica Boscaiu and published by MDPI. This book was released on 2020-12-02 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.

Book Water  Radiation  Salt  and Other Stresses

Download or read book Water Radiation Salt and Other Stresses written by J. Levitt and published by Elsevier. This book was released on 2015-12-04 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Responses of Plants to Environmental Stresses, Second Edition, Volume II: Water, Radiation, Salt, and Other Stresses focuses on the effects of stresses on plants. This book discusses how stresses produce their damaging effects and how living organisms defend themselves against stresses. Organized into six parts encompassing 12 chapters, this edition starts with an overview of the various responses of plants to the severities of all the other environmental stresses, with emphasis on the physical and biological stresses and strains. This text then describes water stress in plants, which arise either from an excessive or from an insufficient water activity in the plant's environment. Other chapters consider the resistance to drought stress of plants. This book discusses as well the effects of flooding, which replaces gaseous air by liquid water. The final chapter deals with the comparative stress responses of plants. This book is a valuable resource for plant biologists.

Book Physiology of Crop Production

Download or read book Physiology of Crop Production written by N.K. Fageria and published by CRC Press. This book was released on 2006-05-16 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This single volume explores the theoretical and the practical aspects of crop physiological processes around the world The marked decrease over the past century in the land available for crop production has brought about mounting pressure to increase crop yields, especially in developing nations. Physiology of Crop Production provides cutting-edge research and data for complete coverage of the physiology of crop production, all in one source, right at your fingertips. This valuable reference gives the extensive in-depth information soil and crop professionals need to maximize crop productivity anywhere the world. Leading soil and plant scientists and researchers clearly explain theory, practical applications, and the latest advances in the field. Crop physiology is a vital science needed to understand crop growth and development to facilitate increases of plant yield. Physiology of Crop Production presents a wide range of information and references from varying regions of the world to make the book as complete and broadly focused as possible. Discussion in each chapter is supported by experimental data to make this book a superb resource that will be used again and again. Chapter topics include plant and root architecture, growth and yield components, photosynthesis, source-sink relationship, water use efficiency, crop yield relative to water stress, and active and passive ion transport. Several figures and tables accompany the extensive referencing to provide a detailed, in-depth look at every facet of crop production. Physiology of Crop Production explores management strategies for: ideal plant architecture maximizing root systems ideal yield components maximizing photosynthesis maximizing source-sink relationship sequestration of carbon dioxide reducing the effects of drought improving N, P, K, Ca, Mg, and S nutrition improving micronutrient uptake Physiology of Crop Production is an essential desktop resource for plant physiologists, soil and crop scientists, breeders, agronomists, agronomy administrators in agro-industry, educators, and upper-level undergraduate and graduate students.