EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass

Download or read book Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass written by Arindam Kuila and published by Elsevier. This book was released on 2020-02-19 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass describes the different aspects of biofuel production from lignocellulosic biomass. Each chapter presents different technological approaches for cost effective liquid biofuel production from agroresidues/biomass. Two chapters cover future direction and the possibilities of biomass-based biofuel production at the industrial level. The book provides a genetic and metabolic engineering approach for improved cellulase production and the potential of strains that can ferment both pentose and hexose sugars. The book also gives direction on how to overcome challenges for the further advancement of lignocellulosic biomass-based biofuel production. - Covers genetic engineering approaches for higher cellulase production from fungi - Includes genetic and metabolic engineering approaches for development of potential pentose and hexose fermenting strain which can tolerate high ethanol and toxic phenolic compounds - Describe different bioreactors used in different steps of biomass-based biofuel production - Outlines future prospects and potential of biofuel production from lignocellulosic biomass

Book Use of Process Design and Metabolic Engineering to Enhance Bioconversion of Lignocellulosic Biomass and Glycerol to Biofuels

Download or read book Use of Process Design and Metabolic Engineering to Enhance Bioconversion of Lignocellulosic Biomass and Glycerol to Biofuels written by Chidozie Victor Agu and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent efforts to reduce dependency on food-based substrates for industrial applications aim towards the use of inexpensive and readily available non-food based substrates such as lignocellulosic biomass (LB) and biodiesel-derived glycerol. Interestingly, the utilization of lignocellulosic sugars for biofuel production is contingent on the disruption of recalcitrant LB cell wall structure prior to enzyme hydrolysis. Disruption and hydrolysis processes generate lignocellulose-derived microbial inhibitory compounds (LDMIC) including acids, aldehydes and phenolics. Additionally, fermentation of glycerol to butanol, a next-generation biofuel, is hampered by the inability of Clostridium beijerinckii NCIMB 8052, a butanol fermentation workhorse, to efficiently metabolize glycerol. Therefore, this study investigated novel strategies for enhancing butanol and ethanol production through process design and metabolic engineering. Towards process design, the bacterium Cupriavidus basilensis ATCC®BAA-699 was used to detoxify 98% of the LDMIC present in acid-pretreated Miscanthus giganteus (MG) lignocellulosic biomass hydrolysates. Fermentation of the detoxified MG hydrolysates by C. beijerinckii resulted in 70%, 50%, and 73% improvement in acetone-butanol-ethanol (ABE) concentration, yield and productivity, respectively, when compared to the fermentation of undetoxified MG hydrolysates. The second objective was to explore metabolic engineering strategies to enhance glycerol utilization by C. beijerinckii and improve butanol production in the presence of LDMIC. To realize this objective, genes that encode glycerol dehydrogenases (Gldh) and dihydroxyacetone kinase (Dhak) in a hyper-glycerol utilizing bacterium (Clostridium pasteurianum ATCC 6013) were systematically cloned into C. beijerinckii. By over-expressing two C. pasteurianum Gldh genes (dhaD1+gldA1) as a fusion protein in C. beijerinckii, we achieved 50% increase in cell growth, ABE production (up to 40%), and enhanced rate of furfural detoxification (up to 68%) during the fermentation of furfural-challenged (4 to 6 g/L) glucose+glycerol medium. Further, co-expression of dhaD1+gldA1 resulted in significant payoff in cell growth (57%), glycerol consumption (14%), and ABE productivity (27.3%) compared to over-expression of a single Gldh. In parallel, while co-expression of dhak and gldA1 in C. beijerinckii improved glycerol consumption by 37% relative to the plasmid control, over-expression of all three genes (dhaD1+gldA1+dhak) improved butanol production by >50% in the presence of 5 and 6 g/L furfural relative to the plasmid control. Objective 3 aimed to develop a high-throughput alcohol dehydrogenase (ADH)-dependent assay for screening hyper- or hypo- butanol producing C. beijerinckii mutant libraries. Screening of the activities of ADHs from different microorganisms showed that Thermotoga hypogea derived ADH has ~7-fold activity towards butanol than ethanol. It was rationalized that T. hypogea ADH can be used to selectively quantify butanol in the presence ofethanol (e.g., in ABE broth). Objective 4 aimed to use allopurinol to inhibit xanthine dehydrogenase/oxidase and improve ethanol fermentation of LB hydrolysates by Saccharomyces cerevisiae. Allopurinol increased S. cerevisiae growth (19%), ethanol titer (21%), ethanol productivity (20%), ethanol yield (24%), and the chronological lifespan of S. cerevisiae (>16 h) during the fermentation of 100% corn stover hydrolysate. Taken together, this study encompasses novel strategies to enhance LB and glycerol utilization and potentially improve the economics of biobutanol and bioethanol production.

Book Metabolic Regulation and Metabolic Engineering for Biofuel and Biochemical Production

Download or read book Metabolic Regulation and Metabolic Engineering for Biofuel and Biochemical Production written by Kazuyuki Shimizu and published by CRC Press. This book was released on 2017-07-12 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: The global warming problem is becoming critical year by year, causing climate disaster all over the world, where it has been believed that the CO2 gas emitted from the factories and the burning of fossil fuels may be one of the reasons of global warming. Moreover, the global stock of fossil fuels is limited, and may run out soon within several tens of years. Although wind, geo-thermal, and tide energies have been considered as clean energy sources, those depend on the land or sea locations and subject to the climate change. Biofuel and biochemical production from renewable bio-resources has thus been paid recent attention from environmental protection and energy production points of view, where the current chemical and energy producing plants can be also utilized with slight modification. The so-called 1st generation biofuels have been produced from corn starch and sugarcane in particular in USA and Brazil. However, this causes the problem of the so-called "food and energy issues" as the production scale increases. The 2nd generation biofuel production from lingo-cellulosic biomass or wastes has thus been paid recent attention. However, it requires energy intensive pretreatment for the degradation of lingo-cellulosic biomass, and the fermentation is slow due to low growth rate, and thus the productivity of biofuels and bio-chemicals is low. The 3rd generation biofuel production from photosynthetic organisms such as cyanobacteria and algae has been also paid attention, because such organisms can grow with only sun light and CO2 in the air, but the cell growth rate and thus the productivity of the fuels is significantly low. The main part or core of such production processes is the fermentation by micro-organisms. In particular, it is critical to properly understand the cell metabolism followed by the efficient metabolic engineering. The book gives comprehensive explanation of the cell metabolism and the metabolic regulation mechanisms of a variety of micro-organisms. Then the efficient metabolic engineering approaches are explained to properly design the microbial cell factories for the efficient cell growth and biofuel and biochemical production.

Book Improving Metabolic Engineering and Characterization of Clostridium Thermocellum for Improved Cellulosic Ethanol Production

Download or read book Improving Metabolic Engineering and Characterization of Clostridium Thermocellum for Improved Cellulosic Ethanol Production written by Beth Alexandra Papanek and published by . This book was released on 2016 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biofules are an important option for humanity to move away from its dependence on fossil fuels. Transitioning from food crops to lignocellulosic alternatives for the production of biofuels is equally important. Most commonly, biofuels are produced using a crop such as corn or soybeans to feed sugars to the yeast, Saccharomyces cerevisiae for the fermentation of ethanol. Lignocellulosic biofuel production would eliminate the need for food crops and transition to biomass such as switchgrass, poplar, or corn stover. Currently, lignocellulosic biofuel production is limited primarily because of the cost of converting the biomass to fermentable sugars than can then be metabolized by yeast. To overcome this barrier, a process must be employed that can convert lignocellulosic biomass directly to fuels and chemicals quickly and affordably. Clostridium thermocellum is one of the most promising candidates for the production of advanced biofuels because of its potential ability to convert cellulose directly to ethanol without the expensive addition of enzymes. Challenges to implementing C. thermocellum on an industrial scale still exist including side product formation, slow growth, limited titers, inhibition on high solids loadings, and a limited ability to perform genetic engineering. This thesis considers all of these concerns with C. thermocellum and attempts to systematically improve each characteristic to produce an industrially relevant strain of C. thermocellum for advanced biofuel production. Metabolic engineering is applied for the elimination of undesirable fermentation products. Laboratory evolution and medium supplementation are used to improve and understand the mechanisms that influence growth rate, and systematic approaches are used to improve transformation for more efficient genetic engineering of C. thermocellum in the future.

Book Lignocellulosic Biomass Refining for Second Generation Biofuel Production

Download or read book Lignocellulosic Biomass Refining for Second Generation Biofuel Production written by Ponnusami V. and published by CRC Press. This book was released on 2023-07-14 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes technological advancements for bioethanol production from lignocellulosic waste Provides a roadmap for the production and utilization of 2G biofuels Introduces the strategic role of metabolic engineering in the development of 2G biofuels Discusses technological advancements, life cycle assessment and prospects Explores novel potential lignocellulosic biomass for 2G biofuels

Book Bioprocessing for Biofuel Production

Download or read book Bioprocessing for Biofuel Production written by Neha Srivastava and published by Springer Nature. This book was released on 2020-10-28 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Converting biomass to biofuels involves hydrolyzing cellulose to sugars using cost-intensive commercial enzymes – an expensive step that makes large-scale production economically non-viable. As such, there is a need for low-cost bioprocessing. This book critically evaluates the available bioprocessing technologies for various biofuels, and presents the latest research in the field. It also highlights the recent developments, current challenges and viable alternative approaches to reduce the overall cost of producing biofuels.

Book Biofuels Production     Sustainability and Advances in Microbial Bioresources

Download or read book Biofuels Production Sustainability and Advances in Microbial Bioresources written by Ajar Nath Yadav and published by Springer Nature. This book was released on 2020-10-08 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the different kinds of biofuels and biofuel resources. Biofuels represent a major type of renewable energy. As part of a larger bio-economy, they are closely linked to agriculture, forestry and manufacturing. Biofuels have the potential to improve regional energy access, reduce dependence on fossil fuels and contribute to climate protection. Further, this alternative form of energy could revitalize the forestry and agricultural sector and promote the increased use of renewable resources as raw materials in a range of industrial processes. Efforts are continuously being made to develop economically competitive biofuels, and microbes play important roles in the production of biofuels from various bioresources. This book elaborates on recent advances in existing microbial technologies and on sustainable approaches to improving biofuel production processes. Additionally, it examines trends in, and the limitations of, existing processes and technologies. The book offers a comprehensive overview of microbial bioresources, microbial technologies, advances in bioconversion and biorefineries, as well as microbial and metabolic engineering for efficient biofuel production. Readers will also learn about the environmental impacts and the influence of climate change on the sustainability of biofuel production. This book is intended for researchers and students whose work involves biorefinery technologies, microbiology, biotechnology, agriculture, environmental biology and related fields.

Book Biotechnology for Biofuel Production and Optimization

Download or read book Biotechnology for Biofuel Production and Optimization written by Carrie A Eckert and published by Elsevier. This book was released on 2016-01-19 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biotechnology for Biofuel Production and Optimization is the compilation of current research findings that cover the entire process of biofuels production from manipulation of genes and pathways to organisms and renewable feedstocks for efficient biofuel production as well as different cultivation techniques and process scale-up considerations. This book captures recent breakthroughs in the interdisciplinary areas of systems and synthetic biology, metabolic engineering, and bioprocess engineering for renewable, cleaner sources of energy. Describes state-of-the-art engineering of metabolic pathways for the production of a variety of fuel molecules Discusses recent advances in synthetic biology and metabolic engineering for rational design, construction, evaluation of novel pathways and cell chassis Covers genome engineering technologies to address complex biofuel-tolerant phenotypes for enhanced biofuel production in engineered chassis Presents the use of novel microorganisms and expanded substrate utilization strategies for production of targeted fuel molecules Explores biohybrid methods for harvesting bioenergy Discusses bioreactor design and optimization of scale-up

Book Biofuels Production

Download or read book Biofuels Production written by Vikash Babu and published by John Wiley & Sons. This book was released on 2013-09-09 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The search for alternative sources of energy to offset diminishing resources of easy and cost-effective fossil fuels has become a global initiative, and fuel generated from biomass is a leading competitor in this arena. Large-scale introduction of biofuels into the energy mix could contribute to environmentally and economicaly sustainable development on a global scale. The processes and methodologies presented in this volume will offer a cutting-edge and comprehensive approach to the production of biofuels, for engineers, researchers, and students.

Book Metabolic Engineering

    Book Details:
  • Author : Jens Nielsen
  • Publisher : Springer Science & Business Media
  • Release : 2001
  • ISBN : 3540418482
  • Pages : 193 pages

Download or read book Metabolic Engineering written by Jens Nielsen and published by Springer Science & Business Media. This book was released on 2001 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metabolic engineering is a rapidly evolving field that is being applied for the optimization of many different industrial processes. In this issue of Advances in Biochemical Engineering/Biotechnology, developments in different areas of metabolic engineering are reviewed. The contributions discuss the application of metabolic engineering in the improvement of yield and productivity - illustrated by amino acid production and the production of novel compounds - in the production of polyketides and extension of the substrate range - and in the engineering of S. cerevisiae for xylose metabolism, and the improvement of a complex biotransformation process.

Book Advances in Lignocellulosic Biofuel Production Systems

Download or read book Advances in Lignocellulosic Biofuel Production Systems written by Preshanthan Moodley and published by Woodhead Publishing. This book was released on 2023-04-27 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Lignocellulosic Biofuel Production Systems focuses on general topics such as novel pretreatment strategies, lignocellulosic biomass as a suitable feedstock for biofuels, lifecycle assessment and integrated biorefineries. Furthermore, the book focuses on more advanced topics such as genetically engineered feedstocks, metabolically engineered microbes, bioreactor design and configuration, cell immobilization strategies, artificial intelligence applications and nanotechnology. This book will guide readers through all aspects of lignocellulosic biofuel production rather than simply covering a single topic. Provides information on the most advanced and innovative technologies for biomass valorization, including the design and configuration of bioreactors Identifies research gaps in the application of artificial intelligence, nanotechnology, cell immobilization, metabolic engineering, kinetic assessment and genetically engineered feedstocks for enhancing lignocellulosic bioprocessing and biofuel yield Presents a global overview of the supply chain for biofuels production from lignocellulosic biomass Includes techno-economic analysis, along with environmental and socioeconomic impact assessments of various technologies

Book Biomass for Bioenergy and Biomaterials

Download or read book Biomass for Bioenergy and Biomaterials written by Nidhi Adlakha and published by CRC Press. This book was released on 2021-10-21 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomass for Bioenergy and Biomaterials presents an overview of recent studies developed specifically for lignocellulose-based production of biofuels, biochemicals, and functional materials. The emphasis is on using sustainable chemistry and engineering to develop innovative materials and fuels for practical applications. Technological strategies for the physical processing or biological conversion of biomass for material production are also presented. FEATURES Offers a comprehensive view of biomass processing, biofuel production, life cycle assessment, techno-economic analysis, and biochemical and biomaterial production Presents details of innovative strategies to pretreat biomass Helps readers understand the underlying metabolic pathways and identify the best engineering strategies for their native strain Highlights different strategies to make biomaterials from biomass Provides insight into the potential economic viability of the biomass-based process This book serves as an ideal reference for academic researchers and engineers working with renewable natural materials, the biorefining of lignocellulose, and biofuels. It can also be used as a comprehensive reference source for university students in metabolic, chemical, and environmental engineering.

Book Genetic and Genome Wide Insights into Microbes Studied for Bioenergy

Download or read book Genetic and Genome Wide Insights into Microbes Studied for Bioenergy written by Katherine M. Pappas and published by Frontiers Media SA. This book was released on 2017-01-27 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The global mandate for safer, cleaner and renewable energy has accelerated research on microbes that convert carbon sources to end-products serving as biofuels of the so-called first, second or third generation – e.g., bioethanol or biodiesel derived from starchy, sugar-rich or oily crops; bioethanol derived from composite lignocellulosic biomass; and biodiesels extracted from oil-producing algae and cyanobacteria, respectively. Recent advances in ‘omics’ applications are beginning to cast light on the biological mechanisms underlying biofuel production. They also unravel mechanisms important for organic solvent or high-added-value chemical production, which, along with those for fuel chemicals, are significant to the broader field of Bioenergy. The Frontiers in Microbial Physiology Research Topic that led to the current e-book publication, operated from 2013 to 2014 and welcomed articles aiming to better understand the genetic basis behind Bioenergy production. It invited genetic studies of microbes already used or carrying the potential to be used for bioethanol, biobutanol, biodiesel, and fuel gas production, as also of microbes posing as promising new catalysts for alternative bioproducts. Any research focusing on the systems biology of such microbes, gene function and regulation, genetic and/or genomic tool development, metabolic engineering, and synthetic biology leading to strain optimization, was considered highly relevant to the topic. Likewise, bioinformatic analyses and modeling pertaining to gene network prediction and function were also desirable and therefore invited in the thematic forum. Upon e-book development today, we, at the editorial, strongly believe that all articles presented herein – original research papers, reviews, perspectives and a technology report – significantly contribute to the emerging insights regarding microbial-derived energy production. Katherine M. Pappas, 2016

Book Bioethanol

    Book Details:
  • Author : Ayerim Y. Hernández Almanza
  • Publisher : CRC Press
  • Release : 2022-07-07
  • ISBN : 1000565130
  • Pages : 542 pages

Download or read book Bioethanol written by Ayerim Y. Hernández Almanza and published by CRC Press. This book was released on 2022-07-07 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book, Bioethanol: Biochemistry and Biotechnological Advances, presents some insightful perspectives and important advances in the bioethanol industry. The volume goes into detail on the biochemical and physiological parameters carried out by the main bioethanol-producing microorganisms as well as the discusses the potential applications that bioproducts can have and the advantages they generate. The chapter authors discuss a variety of issues, including the physiology of ethanol production by yeasts, by Zymomonas mobilis, and by Clostridium thermocellum. Other sources of biofuel, such as sweet sorghum, Agave americana L. leaves waste, and fungi are included as well. Chapters also discuss the genetic regulation and genetic engineering of principal microorganisms and then go on to address ways to increase ethanol tolerance in industrially important ethanol fermenting organisms, methods for developing sustainable fermentable substrates, and new strategies for ethanol purification. Chapters explore the design and engineering requirements for bioreactors, bioelectrosynthesis of ethanol via bioelectrochemical systems, and more. The book will be a valuable resource for faculty and students in this area as well as for scientists, researchers, and managers in the biofuel industry in the area of biofuel production, fermentation process, environmental engineering and all other related scientific areas.

Book Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels  Value Added Products  and Usable Power

Download or read book Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels Value Added Products and Usable Power written by Rajesh K. Sani and published by Springer. This book was released on 2018-07-02 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a review and in-depth analyses of improved biotechnological processes emphasizing critical aspects and challenges of lignocellulosic biomass conversion into biofuels and value-added products especially using extremophiles and recombinant microorganisms. The book specifically comprises extremophilic production of liquid and gaseous biofuels (bioethanol, biobutanol, biodiesel, biohydrogen, and biogas) as well as value added products (e.g. single cell protein, hydrocarbons, lipids, exopolysaccharides, and polyhydroxyalkanoates). The book also provides the knowledge on how to develop safe, more efficient, sustainable, and economical integrated processes for enhanced conversion of lignocellulosic feedstocks to liquid and gaseous biofuels. Finally the book describes how to perform the techno-economical and life-cycle assessments of new integrated processes involving extremophiles. These modeling exercises are critical in addressing any deficiencies associated with the demonstration of an integrated biofuels and value-added products production process at pilot scale as well as demonstration on the commercialization scale.

Book Lignocellulosic Biomass Refining for Second Generation Biofuel Production

Download or read book Lignocellulosic Biomass Refining for Second Generation Biofuel Production written by Ponnusami V. and published by CRC Press. This book was released on 2023-07-14 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compiles research aspects of second-generation (2G) biofuel production derived specifically from lignocellulose biomass using biorefinery methods. It focuses on the valorization of different sources of 2G biofuels and their relative importance. The constituents of lignocelluloses and their potential characteristics different methods of treating lignocellulose, various means of lignocellulose bioconversion, and biofuel production strategies are discussed. Features: Describes technological advancements for bioethanol production from lignocellulosic waste. Provides the roadmap for the production and utilization of 2G biofuels. Introduces the strategic role of metabolic engineering in the development of 2G biofuels. Discusses technological advancements, life cycle assessment, and prospects. Explores the novel potential lignocellulosic biomass for 2G biofuels. This book is aimed at researchers and professionals in renewable energy, biofuel, bioethanol, lignocellulose conversion, fermentation, and chemical engineering.

Book Lignocellulose Conversion

    Book Details:
  • Author : Vincenza Faraco
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-12
  • ISBN : 3642378617
  • Pages : 207 pages

Download or read book Lignocellulose Conversion written by Vincenza Faraco and published by Springer Science & Business Media. This book was released on 2013-06-12 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioethanol has been recognized as a potential alternative to petroleum-derived transportation fuels. Even if cellulosic biomass is less expensive than corn and sugarcane, the higher costs for its conversion make the near-term price of cellulosic ethanol higher than that of corn ethanol and even more than that of sugarcane ethanol. Conventional process for bioethanol production from lignocellulose includes a chemical/physical pre-treatment of lignocellulose for lignin removal, mostly based on auto hydrolysis and acid hydrolysis, followed by saccharification of the free accessible cellulose portions of the biomass. The highest yields of fermentable sugars from cellulose portion are achieved by means of enzymatic hydrolysis, currently carried out using a mix of cellulases from the fungus Trichoderma reesei. Reduction of (hemi)cellulases production costs is strongly required to increase competitiveness of second generation bioethanol production. The final step is the fermentation of sugars obtained from saccharification, typically performed by the yeast Saccharomyces cerevisiae. The current process is optimized for 6-carbon sugars fermentation, since most of yeasts cannot ferment 5-carbon sugars. Thus, research is aimed at exploring new engineered yeasts abilities to co-ferment 5- and 6-carbon sugars. Among the main routes to advance cellulosic ethanol, consolidate bio-processing, namely direct conversion of biomass into ethanol by a genetically modified microbes, holds tremendous potential to reduce ethanol production costs. Finally, the use of all the components of lignocellulose to produce a large spectra of biobased products is another challenge for further improving competitiveness of second generation bioethanol production, developing a biorefinery.