EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Generative AI   Text Generation Strategies for LLMs

Download or read book Generative AI Text Generation Strategies for LLMs written by Anand Vemula and published by Anand Vemula. This book was released on with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delves into the fascinating world of generative AI and explores how Large Language Models (LLMs) are revolutionizing text creation. It equips you with a foundational understanding of these AI models and empowers you to leverage their capabilities for various purposes. Part 1: Foundational Concepts sets the stage by introducing generative AI and its application in text generation. It unveils the inner workings of LLMs, explaining how these AI models are specifically designed to understand and process human language. You'll explore the vast potential of LLM-powered text generation, from crafting poems and scripts to generating product descriptions and social media content. Part 2: Applications and Use Cases dives into the practical applications of LLMs. You'll discover how LLMs can be used to generate different creative text formats like poetry, code, and even movie scripts. Explore techniques for style transfer and textual mashups, allowing you to create unique and innovative writing styles. The chapter on content creation and marketing explores how LLMs can assist with generating product descriptions, blog posts, and social media content, streamlining your content creation process. Part 3: Evaluation and Considerations delves into the process of evaluating LLM-generated text. You'll learn about various metrics used to assess the quality of the generated content, including coherence, fluency, and grammatical correctness. The chapter on challenges and biases in LLM text generation explores the importance of mitigating bias and promoting fairness in AI development. It also addresses safety and security concerns, along with the need for explainability and interpretability of LLM outputs. The final chapter explores the exciting future of generative AI and LLMs. You'll discover emerging trends like more powerful LLMs, multimodal capabilities that integrate text with other formats, and the potential for personalized LLMs that adapt to individual users. The book concludes by discussing the broader impact of generative AI on society, exploring its potential to transform creative industries, education, and communication. By understanding the fundamentals of LLMs and their applications, you can become an active participant in this evolving landscape of AI-powered text generation. This book equips you with the knowledge and tools to leverage the power of LLMs and unlock their potential for creative exploration, informative content creation, and innovative communication.

Book Generative Deep Learning

Download or read book Generative Deep Learning written by David Foster and published by "O'Reilly Media, Inc.". This book was released on 2019-06-28 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN

Book Generative AI and LLMs

    Book Details:
  • Author : S. Balasubramaniam
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2024-09-23
  • ISBN : 3111425517
  • Pages : 366 pages

Download or read book Generative AI and LLMs written by S. Balasubramaniam and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-09-23 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative artificial intelligence (GAI) and large language models (LLM) are machine learning algorithms that operate in an unsupervised or semi-supervised manner. These algorithms leverage pre-existing content, such as text, photos, audio, video, and code, to generate novel content. The primary objective is to produce authentic and novel material. In addition, there exists an absence of constraints on the quantity of novel material that they are capable of generating. New material can be generated through the utilization of Application Programming Interfaces (APIs) or natural language interfaces, such as the ChatGPT developed by Open AI and Bard developed by Google. The field of generative artificial intelligence (AI) stands out due to its unique characteristic of undergoing development and maturation in a highly transparent manner, with its progress being observed by the public at large. The current era of artificial intelligence is being influenced by the imperative to effectively utilise its capabilities in order to enhance corporate operations. Specifically, the use of large language model (LLM) capabilities, which fall under the category of Generative AI, holds the potential to redefine the limits of innovation and productivity. However, as firms strive to include new technologies, there is a potential for compromising data privacy, long-term competitiveness, and environmental sustainability. This book delves into the exploration of generative artificial intelligence (GAI) and LLM. It examines the historical and evolutionary development of generative AI models, as well as the challenges and issues that have emerged from these models and LLM. This book also discusses the necessity of generative AI-based systems and explores the various training methods that have been developed for generative AI models, including LLM pretraining, LLM fine-tuning, and reinforcement learning from human feedback. Additionally, it explores the potential use cases, applications, and ethical considerations associated with these models. This book concludes by discussing future directions in generative AI and presenting various case studies that highlight the applications of generative AI and LLM.

Book Large Language Models in Cybersecurity

Download or read book Large Language Models in Cybersecurity written by Andrei Kucharavy and published by Springer Nature. This book was released on 2024 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides cybersecurity practitioners with the knowledge needed to understand the risks of the increased availability of powerful large language models (LLMs) and how they can be mitigated. It attempts to outrun the malicious attackers by anticipating what they could do. It also alerts LLM developers to understand their work's risks for cybersecurity and provides them with tools to mitigate those risks. The book starts in Part I with a general introduction to LLMs and their main application areas. Part II collects a description of the most salient threats LLMs represent in cybersecurity, be they as tools for cybercriminals or as novel attack surfaces if integrated into existing software. Part III focuses on attempting to forecast the exposure and the development of technologies and science underpinning LLMs, as well as macro levers available to regulators to further cybersecurity in the age of LLMs. Eventually, in Part IV, mitigation techniques that should allowsafe and secure development and deployment of LLMs are presented. The book concludes with two final chapters in Part V, one speculating what a secure design and integration of LLMs from first principles would look like and the other presenting a summary of the duality of LLMs in cyber-security. This book represents the second in a series published by the Technology Monitoring (TM) team of the Cyber-Defence Campus. The first book entitled "Trends in Data Protection and Encryption Technologies" appeared in 2023. This book series provides technology and trend anticipation for government, industry, and academic decision-makers as well as technical experts.

Book Generative AI in Action

Download or read book Generative AI in Action written by Amit Bahree and published by Simon and Schuster. This book was released on 2024-10-29 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative AI can transform your business by streamlining the process of creating text, images, and code. This book will show you how to get in on the action! Generative AI in Action is the comprehensive and concrete guide to generative AI you’ve been searching for. It introduces both AI’s fundamental principles and its practical applications in an enterprise context—from generating text and images for product catalogs and marketing campaigns, to technical reporting, and even writing software. Inside, author Amit Bahree shares his experience leading Generative AI projects at Microsoft for nearly a decade, starting well before the current GPT revolution. Inside Generative AI in Action you will find: • A practical overview of of generative AI applications • Architectural patterns, integration guidance, and best practices for generative AI • The latest techniques like RAG, prompt engineering, and multi-modality • The challenges and risks of generative AI like hallucinations and jailbreaks • How to integrate generative AI into your business and IT strategy Generative AI in Action is full of real-world use cases for generative AI, showing you where and how to start integrating this powerful technology into your products and workflows. You’ll benefit from tried-and-tested implementation advice, as well as application architectures to deploy GenAI in production at enterprise scale. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology In controlled environments, deep learning systems routinely surpass humans in reading comprehension, image recognition, and language understanding. Large Language Models (LLMs) can deliver similar results in text and image generation and predictive reasoning. Outside the lab, though, generative AI can both impress and fail spectacularly. So how do you get the results you want? Keep reading! About the book Generative AI in Action presents concrete examples, insights, and techniques for using LLMs and other modern AI technologies successfully and safely. In it, you’ll find practical approaches for incorporating AI into marketing, software development, business report generation, data storytelling, and other typically-human tasks. You’ll explore the emerging patterns for GenAI apps, master best practices for prompt engineering, and learn how to address hallucination, high operating costs, the rapid pace of change and other common problems. What's inside • Best practices for deploying Generative AI apps • Production-quality RAG • Adapting GenAI models to your specific domain About the reader For enterprise architects, developers, and data scientists interested in upgrading their architectures with generative AI. About the author Amit Bahree is Principal Group Product Manager for the Azure AI engineering team at Microsoft. The technical editor on this book was Wee Hyong Tok. Table of Contents Part 1 1 Introduction to generative AI 2 Introduction to large language models 3 Working through an API: Generating text 4 From pixels to pictures: Generating images 5 What else can AI generate? Part 2 6 Guide to prompt engineering 7 Retrieval-augmented generation: The secret weapon 8 Chatting with your data 9 Tailoring models with model adaptation and fine-tuning Part 3 10 Application architecture for generative AI apps 11 Scaling up: Best practices for production deployment 12 Evaluations and benchmarks 13 Guide to ethical GenAI: Principles, practices, and pitfalls A The book’s GitHub repository B Responsible AI tools

Book Generative AI

Download or read book Generative AI written by Martin Musiol and published by John Wiley & Sons. This book was released on 2023-01-08 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: An engaging and essential discussion of generative artificial intelligence In Generative AI: Navigating the Course to the Artificial General Intelligence Future, celebrated author Martin Musiol—founder and CEO of generativeAI.net and GenAI Lead for Europe at Infosys—delivers an incisive and one-of-a-kind discussion of the current capabilities, future potential, and inner workings of generative artificial intelligence. In the book, you'll explore the short but eventful history of generative artificial intelligence, what it's achieved so far, and how it's likely to evolve in the future. You'll also get a peek at how emerging technologies are converging to create exciting new possibilities in the GenAI space. Musiol analyzes complex and foundational topics in generative AI, breaking them down into straightforward and easy-to-understand pieces. You'll also find: Bold predictions about the future emergence of Artificial General Intelligence via the merging of current AI models Fascinating explorations of the ethical implications of AI, its potential downsides, and the possible rewards Insightful commentary on Autonomous AI Agents and how AI assistants will become integral to daily life in professional and private contexts Perfect for anyone interested in the intersection of ethics, technology, business, and society—and for entrepreneurs looking to take advantage of this tech revolution—Generative AI offers an intuitive, comprehensive discussion of this fascinating new technology.

Book Generative AI with LangChain

Download or read book Generative AI with LangChain written by Ben Auffarth and published by Packt Publishing Ltd. This book was released on 2023-12-22 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2024 Edition – Get to grips with the LangChain framework to develop production-ready applications, including agents and personal assistants. The 2024 edition features updated code examples and an improved GitHub repository. Purchase of the print or Kindle book includes a free PDF eBook. Key Features Learn how to leverage LangChain to work around LLMs’ inherent weaknesses Delve into LLMs with LangChain and explore their fundamentals, ethical dimensions, and application challenges Get better at using ChatGPT and GPT models, from heuristics and training to scalable deployment, empowering you to transform ideas into reality Book DescriptionChatGPT and the GPT models by OpenAI have brought about a revolution not only in how we write and research but also in how we can process information. This book discusses the functioning, capabilities, and limitations of LLMs underlying chat systems, including ChatGPT and Gemini. It demonstrates, in a series of practical examples, how to use the LangChain framework to build production-ready and responsive LLM applications for tasks ranging from customer support to software development assistance and data analysis – illustrating the expansive utility of LLMs in real-world applications. Unlock the full potential of LLMs within your projects as you navigate through guidance on fine-tuning, prompt engineering, and best practices for deployment and monitoring in production environments. Whether you're building creative writing tools, developing sophisticated chatbots, or crafting cutting-edge software development aids, this book will be your roadmap to mastering the transformative power of generative AI with confidence and creativity.What you will learn Create LLM apps with LangChain, like question-answering systems and chatbots Understand transformer models and attention mechanisms Automate data analysis and visualization using pandas and Python Grasp prompt engineering to improve performance Fine-tune LLMs and get to know the tools to unleash their power Deploy LLMs as a service with LangChain and apply evaluation strategies Privately interact with documents using open-source LLMs to prevent data leaks Who this book is for The book is for developers, researchers, and anyone interested in learning more about LangChain. Whether you are a beginner or an experienced developer, this book will serve as a valuable resource if you want to get the most out of LLMs using LangChain. Basic knowledge of Python is a prerequisite, while prior exposure to machine learning will help you follow along more easily.

Book Prompt Engineering for Generative AI

Download or read book Prompt Engineering for Generative AI written by James Phoenix and published by "O'Reilly Media, Inc.". This book was released on 2024-05-16 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large language models (LLMs) and diffusion models such as ChatGPT and Stable Diffusion have unprecedented potential. Because they have been trained on all the public text and images on the internet, they can make useful contributions to a wide variety of tasks. And with the barrier to entry greatly reduced today, practically any developer can harness LLMs and diffusion models to tackle problems previously unsuitable for automation. With this book, you'll gain a solid foundation in generative AI, including how to apply these models in practice. When first integrating LLMs and diffusion models into their workflows, most developers struggle to coax reliable enough results from them to use in automated systems. Authors James Phoenix and Mike Taylor show you how a set of principles called prompt engineering can enable you to work effectively with AI. Learn how to empower AI to work for you. This book explains: The structure of the interaction chain of your program's AI model and the fine-grained steps in between How AI model requests arise from transforming the application problem into a document completion problem in the model training domain The influence of LLM and diffusion model architecture—and how to best interact with it How these principles apply in practice in the domains of natural language processing, text and image generation, and code

Book Building AI Intensive Python Applications

Download or read book Building AI Intensive Python Applications written by Rachelle Palmer and published by Packt Publishing Ltd. This book was released on 2024-09-06 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master retrieval-augmented generation architecture and fine-tune your AI stack, along with discovering real-world use cases and best practices to create powerful AI apps Key Features Get to grips with the fundamentals of LLMs, vector databases, and Python frameworks Implement effective retrieval-augmented generation strategies with MongoDB Atlas Optimize AI models for performance and accuracy with model compression and deployment optimization Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe era of generative AI is upon us, and this book serves as a roadmap to harness its full potential. With its help, you’ll learn the core components of the AI stack: large language models (LLMs), vector databases, and Python frameworks, and see how these technologies work together to create intelligent applications. The chapters will help you discover best practices for data preparation, model selection, and fine-tuning, and teach you advanced techniques such as retrieval-augmented generation (RAG) to overcome common challenges, such as hallucinations and data leakage. You’ll get a solid understanding of vector databases, implement effective vector search strategies, refine models for accuracy, and optimize performance to achieve impactful results. You’ll also identify and address AI failures to ensure your applications deliver reliable and valuable results. By evaluating and improving the output of LLMs, you’ll be able to enhance their performance and relevance. By the end of this book, you’ll be well-equipped to build sophisticated AI applications that deliver real-world value.What you will learn Understand the architecture and components of the generative AI stack Explore the role of vector databases in enhancing AI applications Master Python frameworks for AI development Implement Vector Search in AI applications Find out how to effectively evaluate LLM output Overcome common failures and challenges in AI development Who this book is for This book is for software engineers and developers looking to build intelligent applications using generative AI. While the book is suitable for beginners, a basic understanding of Python programming is required to make the most of it.

Book Essential Guide to LLMOps

Download or read book Essential Guide to LLMOps written by RYAN. DOAN and published by Packt Publishing Ltd. This book was released on 2024-07-31 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the secrets to mastering LLMOps with innovative approaches to streamline AI workflows, improve model efficiency, and ensure robust scalability, revolutionizing your language model operations from start to finish Key Features Gain a comprehensive understanding of LLMOps, from data handling to model governance Leverage tools for efficient LLM lifecycle management, from development to maintenance Discover real-world examples of industry cutting-edge trends in generative AI operation Purchase of the print or Kindle book includes a free PDF eBook Book Description The rapid advancements in large language models (LLMs) bring significant challenges in deployment, maintenance, and scalability. This Essential Guide to LLMOps provides practical solutions and strategies to overcome these challenges, ensuring seamless integration and the optimization of LLMs in real-world applications. This book takes you through the historical background, core concepts, and essential tools for data analysis, model development, deployment, maintenance, and governance. You’ll learn how to streamline workflows, enhance efficiency in LLMOps processes, employ LLMOps tools for precise model fine-tuning, and address the critical aspects of model review and governance. You’ll also get to grips with the practices and performance considerations that are necessary for the responsible development and deployment of LLMs. The book equips you with insights into model inference, scalability, and continuous improvement, and shows you how to implement these in real-world applications. By the end of this book, you’ll have learned the nuances of LLMOps, including effective deployment strategies, scalability solutions, and continuous improvement techniques, equipping you to stay ahead in the dynamic world of AI. What you will learn Understand the evolution and impact of LLMs in AI Differentiate between LLMOps and traditional MLOps Utilize LLMOps tools for data analysis, preparation, and fine-tuning Master strategies for model development, deployment, and improvement Implement techniques for model inference, serving, and scalability Integrate human-in-the-loop strategies for refining LLM outputs Grasp the forefront of emerging technologies and practices in LLMOps Who this book is for This book is for machine learning professionals, data scientists, ML engineers, and AI leaders interested in LLMOps. It is particularly valuable for those developing, deploying, and managing LLMs, as well as academics and students looking to deepen their understanding of the latest AI and machine learning trends. Professionals in tech companies and research institutions, as well as anyone with foundational knowledge of machine learning will find this resource invaluable for advancing their skills in LLMOps.

Book Microsoft Azure AI Fundamentals AI 900 Exam Guide

Download or read book Microsoft Azure AI Fundamentals AI 900 Exam Guide written by Aaron Guilmette and published by Packt Publishing Ltd. This book was released on 2024-05-31 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get ready to pass the certification exam on your first attempt by gaining actionable insights into AI concepts, ML techniques, and Azure AI services covered in the latest AI-900 exam syllabus from two industry experts Key Features Discover Azure AI services, including computer vision, Auto ML, NLP, and OpenAI Explore AI use cases, such as image identification, chatbots, and more Work through 145 practice questions under chapter-end self-assessments and mock exams Purchase of this book unlocks access to web-based exam prep resources, including mock exams, flashcards, and exam tips Book Description The AI-900 exam helps you take your first step into an AI-shaped future. Regardless of your technical background, this book will help you test your understanding of the key AI-related topics and tools used to develop AI solutions in Azure cloud. This exam guide focuses on AI workloads, including natural language processing (NLP) and large language models (LLMs). You'll explore Microsoft's responsible AI principles like safety and accountability. Then, you'll cover the basics of machine learning (ML), including classification and deep learning, and learn how to use training and validation datasets with Azure ML. Using Azure AI Vision, face detection, and Video Indexer services, you'll get up to speed with computer vision-related topics like image classification, object detection, and facial detection. Later chapters cover NLP features such as key phrase extraction, sentiment analysis, and speech processing using Azure AI Language, speech, and translator services. The book also guides you through identifying GenAI models and leveraging Azure OpenAI Service for content generation. At the end of each chapter, you'll find chapter review questions with answers, provided as an online resource. By the end of this exam guide, you'll be able to work with AI solutions in Azure and pass the AI-900 exam using the online exam prep resources. What you will learn Discover various types of artificial intelligence (AI)workloads and services in Azure Cover Microsoft's guiding principles for responsible AI development and use Understand the fundamental principles of how AI and machine learning work Explore how AI models can recognize content in images and documents Gain insights into the features and use cases for natural language processing Explore the capabilities of generative AI services Who this book is for Whether you're a cloud engineer, software developer, an aspiring data scientist, or simply interested in learning AI/ML concepts and capabilities on Azure, this book is for you. The book also serves as a foundation for those looking to attempt more advanced AI and data science-related certification exams (e.g. Microsoft Certified: Azure AI Engineer Associate). Although no experience in data science and software engineering is required, basic knowledge of cloud concepts and client-server applications is assumed.

Book

    Book Details:
  • Author :
  • Publisher : Springer Nature
  • Release :
  • ISBN : 9464635401
  • Pages : 1042 pages

Download or read book written by and published by Springer Nature. This book was released on with total page 1042 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Generative AI Practitioner   s Guide

Download or read book The Generative AI Practitioner s Guide written by Arup Das and published by TinyTechMedia LLC. This book was released on 2024-07-20 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative AI is revolutionizing the way organizations leverage technology to gain a competitive edge. However, as more companies experiment with and adopt AI systems, it becomes challenging for data and analytics professionals, AI practitioners, executives, technologists, and business leaders to look beyond the buzz and focus on the essential questions: Where should we begin? How do we initiate the process? What potential pitfalls should we be aware of? This TinyTechGuide offers valuable insights and practical recommendations on constructing a business case, calculating ROI, exploring real-life applications, and considering ethical implications. Crucially, it introduces five LLM patterns—author, retriever, extractor, agent, and experimental—to effectively implement GenAI systems within an organization. The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications bridges critical knowledge gaps for business leaders and practitioners, equipping them with a comprehensive toolkit to define a business case and successfully deploy GenAI. In today’s rapidly evolving world, staying ahead of the competition requires a deep understanding of these five implementation patterns and the potential benefits and risks associated with GenAI. Designed for business leaders, tech experts, and IT teams, this book provides real-life examples and actionable insights into GenAI’s transformative impact on various industries. Empower your organization with a competitive edge in today’s marketplace using The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications. Remember, it’s not the tech that’s tiny, just the book!™

Book Using Generative AI Effectively in Higher Education

Download or read book Using Generative AI Effectively in Higher Education written by Sue Beckingham and published by Taylor & Francis. This book was released on 2024-06-14 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using Generative AI Effectively in Higher Education explores how higher education providers can realise their role and responsibility in harnessing the power of generative artificial intelligence (GenAI) ethically and sustainably. This rich collection of established and evaluated practices from across global higher education offers a practical guide to leading an agile institutional response to emerging technologies, building critical digital literacy across an entire institution, and embedding the ethical and sustainable use of GenAI in teaching, learning, and assessment. Including reflections from stakeholders testifying to the value of the approaches outlined, the book examines how higher education can equip staff and students with the critical-digital literacy necessary to use GenAI in work, study, and social life responsibly and with integrity. It provides an evidence-based resource for any kind of higher education (HE) provider (modern, college-based, and research-focused) looking for inspiration and approaches which can build GenAI capability and includes chapters on the development of cross-institutional strategy, policies and processes, pedagogic practices, and critical-digital literacy. This resource will be invaluable to educational leaders, educational developers, learning developers, learning technologists, course administrators, quality assurance staff, and HE teachers wishing to embrace and adapt to a GenAI-enabled world.

Book Quick Start Guide to Large Language Models

Download or read book Quick Start Guide to Large Language Models written by Sinan Ozdemir and published by Addison-Wesley Professional. This book was released on 2024-09-26 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products Large Language Models (LLMs) like Llama 3, Claude 3, and the GPT family are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, Second Edition, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems. Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, and hands-on exercises. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, prompting, fine-tuning, performance, and much more. The resources on the companion website include sample datasets and up-to-date code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and GPT-3.5), Google (BERT, T5, and Gemini), X (Grok), Anthropic (the Claude family), Cohere (the Command family), and Meta (BART and the LLaMA family). Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more Use APIs and Python to fine-tune and customize LLMs for your requirements Build a complete neural/semantic information retrieval system and attach to conversational LLMs for building retrieval-augmented generation (RAG) chatbots and AI Agents Master advanced prompt engineering techniques like output structuring, chain-of-thought prompting, and semantic few-shot prompting Customize LLM embeddings to build a complete recommendation engine from scratch with user data that outperforms out-of-the-box embeddings from OpenAI Construct and fine-tune multimodal Transformer architectures from scratch using open-source LLMs and large visual datasets Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF) to build conversational agents from open models like Llama 3 and FLAN-T5 Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind Diagnose and optimize LLMs for speed, memory, and performance with quantization, probing, benchmarking, and evaluation frameworks "A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field." --Pete Huang, author of The Neuron Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Book Strategic Management

Download or read book Strategic Management written by Jeffrey H. Dyer and published by John Wiley & Sons. This book was released on 2024-02-21 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Students enjoy the concise and approachable style of Strategic Management: Concepts and Cases, 5th Edition. Written in an accessible Harvard Business Review style with lots of practical examples and strategy tools, this course engages students with an easy-to-understand learning experience to strategic management concepts that will help them succeed in today's workplace. The newest edition of Strategic Management sparks ideas, fuels creative thinking, and discussion, while engaging students via contemporary examples, outstanding author-produced cases, unique Strategy Tool Applications, and much more!

Book Mastering LLMs and GPUs  A Hands on Guide to Programming  Optimization  and Deployment

Download or read book Mastering LLMs and GPUs A Hands on Guide to Programming Optimization and Deployment written by Anand Vemula and published by Anand Vemula. This book was released on with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tired of slow AI? Want to build groundbreaking applications powered by language? This book is your key! Mastering LLMs and GPUs: A Hands-on Guide to Programming, Optimization, and Deployment equips you with the practical skills to leverage the revolutionary power of Large Language Models (LLMs) and Graphics Processing Units (GPUs). Inside, you'll discover: The Fundamentals: Demystify LLMs, grasp their architectures, and understand how they leverage massive data to generate human-quality text, translate languages, and answer your questions in an informative way. GPU Powerhouse: Unlock the secrets of GPUs, the processing engines that accelerate LLM training compared to traditional CPUs. Learn how to harness their parallel processing capabilities for lightning-fast results. Become an LLM Programming Pro: Code Like a Master: Dive into the world of LLM programming with essential tools and libraries like CUDA or OpenCL. Write code that effectively unleashes the parallel processing power of GPUs. Optimize for Peak Performance: Master memory management strategies to ensure data is readily available for faster processing. Explore techniques for fine-tuning pre-trained LLMs, specializing them for specific tasks and maximizing their effectiveness. Deploy Your LLM Creations: Real-World Applications: Learn to integrate your trained and optimized LLM into applications or cloud platforms, making it accessible for real-world use cases. Practical Considerations: Gain insights into resource management and performance monitoring techniques to keep your LLM running smoothly. Mastering LLMs and GPUs is your comprehensive guide to building powerful language models. With hands-on exercises, clear explanations, and practical advice, you'll be well on your way to developing groundbreaking AI applications that transform the way we interact with language.