Download or read book Introduction to Humanoid Robotics written by Shuuji Kajita and published by Springer. This book was released on 2014-07-15 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for researchers, engineers, and students who are willing to understand how humanoid robots move and be controlled. The book starts with an overview of the humanoid robotics research history and state of the art. Then it explains the required mathematics and physics such as kinematics of multi-body system, Zero-Moment Point (ZMP) and its relationship with body motion. Biped walking control is discussed in depth, since it is one of the main interests of humanoid robotics. Various topics of the whole body motion generation are also discussed. Finally multi-body dynamics is presented to simulate the complete dynamic behavior of a humanoid robot. Throughout the book, Matlab codes are shown to test the algorithms and to help the reader ́s understanding.
Download or read book Humanoid Robots written by Dragomir N. Nenchev and published by Butterworth-Heinemann. This book was released on 2018-11-21 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Humanoid Robots: Modeling and Control provides systematic presentation of the models used in the analysis, design and control of humanoid robots. The book starts with a historical overview of the field, a summary of the current state of the art achievements and an outline of the related fields of research. It moves on to explain the theoretical foundations in terms of kinematic, kineto-static and dynamic relations. Further on, a detailed overview of biped balance control approaches is presented. Models and control algorithms for cooperative object manipulation with a multi-finger hand, a dual-arm and a multi-robot system are also discussed. One of the chapters is devoted to selected topics from the area of motion generation and control and their applications. The final chapter focuses on simulation environments, specifically on the step-by-step design of a simulator using the Matlab® environment and tools. This book will benefit readers with an advanced level of understanding of robotics, mechanics and control such as graduate students, academic and industrial researchers and professional engineers. Researchers in the related fields of multi-legged robots, biomechanics, physical therapy and physics-based computer animation of articulated figures can also benefit from the models and computational algorithms presented in the book. Provides a firm theoretical basis for modelling and control algorithm design Gives a systematic presentation of models and control algorithms Contains numerous implementation examples demonstrated with 43 video clips
Download or read book Springer Handbook of Robotics written by Bruno Siciliano and published by Springer Science & Business Media. This book was released on 2008-05-20 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the science of robotics undergoing a major transformation just now, Springer’s new, authoritative handbook on the subject couldn’t have come at a better time. Having broken free from its origins in industry, robotics has been rapidly expanding into the challenging terrain of unstructured environments. Unlike other handbooks that focus on industrial applications, the Springer Handbook of Robotics incorporates these new developments. Just like all Springer Handbooks, it is utterly comprehensive, edited by internationally renowned experts, and replete with contributions from leading researchers from around the world. The handbook is an ideal resource for robotics experts but also for people new to this expanding field.
Download or read book Motion Planning for Humanoid Robots written by Kensuke Harada and published by Springer Science & Business Media. This book was released on 2010-08-12 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on humanoid robots has been mostly with the aim of developing robots that can replace humans in the performance of certain tasks. Motion planning for these robots can be quite difficult, due to their complex kinematics, dynamics and environment. It is consequently one of the key research topics in humanoid robotics research and the last few years have witnessed considerable progress in the field. Motion Planning for Humanoid Robots surveys the remarkable recent advancement in both the theoretical and the practical aspects of humanoid motion planning. Various motion planning frameworks are presented in Motion Planning for Humanoid Robots, including one for skill coordination and learning, and one for manipulating and grasping tasks. The problem of planning sequences of contacts that support acyclic motion in a highly constrained environment is addressed and a motion planner that enables a humanoid robot to push an object to a desired location on a cluttered table is described. The main areas of interest include: • whole body motion planning, • task planning, • biped gait planning, and • sensor feedback for motion planning. Torque-level control of multi-contact behavior, autonomous manipulation of moving obstacles, and movement control and planning architecture are also covered. Motion Planning for Humanoid Robots will help readers to understand the current research on humanoid motion planning. It is written for industrial engineers, advanced undergraduate and postgraduate students.
Download or read book Human Inspired Balancing and Recovery Stepping for Humanoid Robots written by Kaul, Lukas Sebastian and published by KIT Scientific Publishing. This book was released on 2019-05-15 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robustly maintaining balance on two legs is an important challenge for humanoid robots. The work presented in this book represents a contribution to this area. It investigates efficient methods for the decision-making from internal sensors about whether and where to step, several improvements to efficient whole-body postural balancing methods, and proposes and evaluates a novel method for efficient recovery step generation, leveraging human examples and simulation-based reinforcement learning.
Download or read book Robotics Research written by Nancy M. Amato and published by Springer Nature. This book was released on 2019-11-28 with total page 1058 pages. Available in PDF, EPUB and Kindle. Book excerpt: ISRR, the "International Symposium on Robotics Research", is one of robotics pioneering Symposia, which has established over the past two decades some of the field's most fundamental and lasting contributions. This book presents the results of the eighteenth edition of "Robotics Research" ISRR17, offering a collection of a broad range of topics in robotics. This symposium took place in Puerto Varas, Chile from December 11th to December 14th, 2017. The content of the contributions provides a wide coverage of the current state of robotics research, the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new emerging areas of applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field's increased maturity and expanded scope and define the state of the art of robotics and its future direction.
Download or read book The DARPA Robotics Challenge Finals Humanoid Robots To The Rescue written by Matthew Spenko and published by Springer. This book was released on 2018-04-09 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: The DARPA Robotics Challenge was a robotics competition that took place in Pomona, California USA in June 2015. The competition was the culmination of 33 months of demanding work by 23 teams and required humanoid robots to perform challenging locomotion and manipulation tasks in a mock disaster site. The challenge was conceived as a response to the Japanese Fukushima nuclear disaster of March 2011. The Fukushima disaster was seen as an ideal candidate for robotic intervention since the risk of exposure to radiation prevented human responders from accessing the site. This volume, edited by Matthew Spenko, Stephen Buerger, and Karl Iagnemma, includes commentary by the organizers, overall analysis of the results, and documentation of the technical efforts of 15 competing teams. The book provides an important record of the successes and failures involved in the DARPA Robotics Challenge and provides guidance for future needs to be addressed by policy makers, funding agencies, and the robotics research community. Many of the papers in this volume were initially published in a series of special issues of the Journal of Field Robotics. We have proudly collected versions of those papers in this STAR volume.
Download or read book Simulating and Generating Motions of Human Figures written by Katsu Yamane and published by Springer Science & Business Media. This book was released on 2004-01-15 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on two issues related to human figures: realtime dynamics computation and interactive motion generation. In spite of the growing interest in human figures as both physical robots and virtual characters, standard algorithms and tools for their kinematics and dynamics computation have not been investigated very much. "Simulating and Generating Motions of Human Figures" presents original algorithms to simulate, analyze, generate and control motions of human figures, all focusing on realtime and interactive computation. The book provides both practical methods for contact/collision simulation essential for the simulation of humanoid robots and virtual characters and a general framework for online, interactive motion generation of human figures based on the dynamics simulation algorithms.
Download or read book Modeling Simulation and Optimization of Bipedal Walking written by Katja Mombaur and published by Springer Science & Business Media. This book was released on 2013-02-28 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired control algorithms for bipedal walking Generation and deformation of natural walking in computer graphics Imitation of human motions on humanoids Emotional body language during walking Simulation of biologically inspired actuators for bipedal walking machines Modeling and simulation techniques for the development of prostheses Functional electrical stimulation of walking.
Download or read book 2019 IEEE RAS 19th International Conference on Humanoid Robots Humanoids written by and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advances in Mechanism and Machine Science written by Masafumi Okada and published by Springer Nature. This book was released on 2023-11-03 with total page 1018 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the proceedings of the 16th IFToMM World Congress, which was held in Tokyo, Japan, on November 5–10, 2023. Having been organized every four years since 1965, the Congress represents the world’s largest scientific event on mechanism and machine science (MMS). The contributions cover an extremely diverse range of topics, including biomechanical engineering, computational kinematics, design methodologies, dynamics of machinery, multibody dynamics, gearing and transmissions, history of MMS, linkage and mechanical controls, robotics and mechatronics, micro-mechanisms, reliability of machines and mechanisms, rotor dynamics, standardization of terminology, sustainable energy systems, transportation machinery, tribology and vibration. Selected by means of a rigorous international peer-review process, they highlight numerous exciting advances and ideas that will spur novel research directions and foster new multidisciplinary collaborations.
Download or read book Contemporary Planetary Robotics written by Yang Gao and published by John Wiley & Sons. This book was released on 2016-09-13 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: For readers from both academia and industry wishing to pursue their studies and /or careers in planetary robotics, this book represents a one-stop tour of the history, evolution, key systems, and technologies of this emerging field. The book provides a comprehensive introduction to the key techniques and technologies that help to achieve autonomous space systems for cost-effective, high performing planetary robotic missions. Main topics covered include robotic vision, surface navigation, manipulation, mission operations and autonomy, being explained in both theoretical principles and practical use cases. The book recognizes the importance of system design hence discusses practices and tools that help take mission concepts to baseline design solutions, making it a practical piece of scientific reference suited to a variety of practitioners in planetary robotics.
Download or read book Robotics in Natural Settings written by José M. Cascalho and published by Springer Nature. This book was released on 2022-08-24 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes recent research on climbing and walking robots. CLAWAR 2022 is the twenty-fifth International Conference Series on Climbing and Walking Robots and Mobile Machine Support Technologies. The conference is organized by CLAWAR Association in collaboration with the University of the Azores, S. Miguel, Portugal, during September 12-14, 2022. CLAWAR 2022 provides an updated state of the art on robotics and its use in a diversity of applications and/or simulation scenarios, within the framework “Robotics in Natural Settings”. The topics covered include Bio-Inspired Robotics, Biped Locomotion, Educational Robotics, Human-Machine/Human-Robot Interaction, Innovative Actuators, Inspection, Legged Locomotion, Modeling and Simulation of CLAWAR, Outdoor and Field Robotics, Planning and Control, Wearable Devices and Assistive Robotics, and the Use of A.I. in Robotics. The intended readership includes participants of CLAWAR 2022 conference, international robotic researchers, scientists, and professors of related topics worldwide, and professors and students of postgraduate courses in Robotics and Automation, Control Engineering, Mechanical Engineering, and Mechatronics.
Download or read book Humanoid Robotics and Neuroscience written by Gordon Cheng and published by CRC Press. This book was released on 2014-12-19 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Humanoid robots are highly sophisticated machines equipped with human-like sensory and motor capabilities. Today we are on the verge of a new era of rapid transformations in both science and engineering-one that brings together technological advancements in a way that will accelerate both neuroscience and robotics. Humanoid Robotics and Neuroscienc
Download or read book Bipedal Robots written by Christine Chevallereau and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various techniques to carry out the gait modeling, the gait patterns synthesis, and the control of biped robots. Some general information on the human walking, a presentation of the current experimental biped robots, and the application of walking bipeds are given. The modeling is based on the decomposition on a walking step into different sub-phases depending on the way each foot stands into contact on the ground. The robot design is dealt with according to the mass repartition and the choice of the actuators. Different ways to generate walking patterns are considered, such as passive walking and gait synthesis performed using optimization technique. Control based on the robot modeling, neural network methods, or intuitive approaches are presented. The unilaterality of contact is dealt with using on-line adaptation of the desired motion.
Download or read book Modeling Simulation and Optimization written by Biplab Das and published by Springer Nature. This book was released on 2021-03-17 with total page 802 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes selected peer-reviewed papers presented at the International Conference on Modeling, Simulation and Optimization, organized by National Institute of Technology, Silchar, Assam, India, during 3–5 August 2020. The book covers topics of modeling, simulation and optimization, including computational modeling and simulation, system modeling and simulation, device/VLSI modeling and simulation, control theory and applications, modeling and simulation of energy system and optimization. The book disseminates various models of diverse systems and includes solutions of emerging challenges of diverse scientific fields.
Download or read book Humanoid Robots written by Armando Carlos De Pina Filho and published by BoD – Books on Demand. This book was released on 2007-06-01 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion.