Download or read book Generalized Metric Spaces and Mappings written by Shou Lin and published by Springer. This book was released on 2016-10-20 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of mutual classification of spaces and mappings is one of the main research directions of point set topology. In a systematical way, this book discusses the basic theory of generalized metric spaces by using the mapping method, and summarizes the most important research achievements, particularly those from Chinese scholars, in the theory of spaces and mappings since the 1960s. This book has three chapters, two appendices and a list of more than 400 references. The chapters are "The origin of generalized metric spaces", "Mappings on metric spaces" and "Classes of generalized metric spaces". Graduates or senior undergraduates in mathematics major can use this book as their text to study the theory of generalized metric spaces. Researchers in this field can also use this book as a valuable reference.
Download or read book Handbook of Set Theoretic Topology written by K. Kunen and published by Elsevier. This book was released on 2014-06-28 with total page 1282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook is an introduction to set-theoretic topology for students in the field and for researchers in other areas for whom results in set-theoretic topology may be relevant. The aim of the editors has been to make it as self-contained as possible without repeating material which can easily be found in standard texts. The Handbook contains detailed proofs of core results, and references to the literature for peripheral results where space was insufficient. Included are many open problems of current interest.In general, the articles may be read in any order. In a few cases they occur in pairs, with the first one giving an elementary treatment of a subject and the second one more advanced results. These pairs are: Hodel and Juhász on cardinal functions; Roitman and Abraham-Todorčević on S- and L-spaces; Weiss and Baumgartner on versions of Martin's axiom; and Vaughan and Stephenson on compactness properties.
Download or read book Nonlinear Analysis written by Themistocles M Rassias and published by World Scientific. This book was released on 1988-01-01 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Fixed Point Theory and Nonlinear Problems (Th Rassias)Global Linearization Iterative Methods and Nonlinear Partial Differential Equations III (M Altman)On Generalized Power Series and Generalized Operational Calculus and Its Application (M Al-Bassam)Multiple Solutions to Parametrized Nonlinear Differential Systems from Nielsen Fixed Point Theory (R Brown)The topology of Ind-Affine Sets (P Cherenack)Almost Approximately Polynomial Functions (P Cholewa)Cohomology Classes and Foliated Manifolds (M Craioveanu & M Puta)Bifurcation and Nonlinear Instability in Applied Mathematics (L Debnath)The Stability of Weakly Additive Functional (H Drljevic)Index Theory for G-Bundle Pairs with Applications to Borsuk-Ulam Type Theorems for G-Sphere Bundles (E Fadell & S Husseini)Nonlinear Approximation and Moment Problem (J S Hwang & G D Lin)Periods in Equicontinuous Topological Dynamical Systems (A Iwanik et al.)Continuation Theorems for Semi-Linear Equations in Banach Spaces: A Survey (J Mawhin & K Rybakowski)On Contractifiable Self-Mappings (P Meyers)Normal Structures and Nonexpansive Mappings in Banach Spaces (J Nelson et al.): Survey on Uniqueness and Classification Theorems for Minimal Surfaces (Th Rassias)Contractive Definitions (B Rhoades)On KY Fan's Theorem and Its Applications (S Singh)Fixed Points of Amenable Semigroups of Differentiable Operators (P Soardi)Research Problems on Nonlinear Equations (Th Rassias) Readership: Mathematicians and applied scientists. Keywords:Nonlinear Analysis;Nonlinear Partial Differential Equations III;Polynomial Functions;Cohomology Classes;Foliated Manifolds;Topological Dynamical Systems;Minimal Surfaces;Differentiable Operators;Nonlinear Equations
Download or read book Mathematical Analysis and Applications written by Michael Ruzhansky and published by John Wiley & Sons. This book was released on 2018-04-11 with total page 1021 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative text that presents the current problems, theories, and applications of mathematical analysis research Mathematical Analysis and Applications: Selected Topics offers the theories, methods, and applications of a variety of targeted topics including: operator theory, approximation theory, fixed point theory, stability theory, minimization problems, many-body wave scattering problems, Basel problem, Corona problem, inequalities, generalized normed spaces, variations of functions and sequences, analytic generalizations of the Catalan, Fuss, and Fuss–Catalan Numbers, asymptotically developable functions, convex functions, Gaussian processes, image analysis, and spectral analysis and spectral synthesis. The authors—a noted team of international researchers in the field— highlight the basic developments for each topic presented and explore the most recent advances made in their area of study. The text is presented in such a way that enables the reader to follow subsequent studies in a burgeoning field of research. This important text: Presents a wide-range of important topics having current research importance and interdisciplinary applications such as game theory, image processing, creation of materials with a desired refraction coefficient, etc. Contains chapters written by a group of esteemed researchers in mathematical analysis Includes problems and research questions in order to enhance understanding of the information provided Offers references that help readers advance to further study Written for researchers, graduate students, educators, and practitioners with an interest in mathematical analysis, Mathematical Analysis and Applications: Selected Topics includes the most recent research from a range of mathematical fields.
Download or read book Fixed Point Theory and Applications written by Ravi P. Agarwal and published by Cambridge University Press. This book was released on 2001-03-22 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
Download or read book Fixed Point Theory in Distance Spaces written by William Kirk and published by Springer. This book was released on 2014-10-23 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a monograph on fixed point theory, covering the purely metric aspects of the theory–particularly results that do not depend on any algebraic structure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually checked. These are, respectively, the Banach contraction mapping principal, Nadler’s well known set-valued extension of that theorem, the extension of Banach’s theorem to nonexpansive mappings, and Caristi’s theorem. These comparisons form a significant component of this book. This book is divided into three parts. Part I contains some aspects of the purely metric theory, especially Caristi’s theorem and a few of its many extensions. There is also a discussion of nonexpansive mappings, viewed in the context of logical foundations. Part I also contains certain results in hyperconvex metric spaces and ultrametric spaces. Part II treats fixed point theory in classes of spaces which, in addition to having a metric structure, also have geometric structure. These specifically include the geodesic spaces, length spaces and CAT(0) spaces. Part III focuses on distance spaces that are not necessarily metric. These include certain distance spaces which lie strictly between the class of semimetric spaces and the class of metric spaces, in that they satisfy relaxed versions of the triangle inequality, as well as other spaces whose distance properties do not fully satisfy the metric axioms.
Download or read book Handbook of Metric Fixed Point Theory written by W.A. Kirk and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces. Because most of the spaces studied in analysis share many algebraic and topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts. The purpose of the Handbook is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers.
Download or read book Lipschitz Algebras written by Nik Weaver and published by World Scientific. This book was released on 1999 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Lipschitz algebras Lp(M), for M a complete metric space, are quite analogous to the spaces C(omega) and Linfinity(X), for omega a compact Hausdorff space and X a sigma-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras.
Download or read book Mathematical Analysis and Applications written by Themistocles M. Rassias and published by Springer Nature. This book was released on 2019-12-12 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: An international community of experts scientists comprise the research and survey contributions in this volume which covers a broad spectrum of areas in which analysis plays a central role. Contributions discuss theory and problems in real and complex analysis, functional analysis, approximation theory, operator theory, analytic inequalities, the Radon transform, nonlinear analysis, and various applications of interdisciplinary research; some are also devoted to specific applications such as the three-body problem, finite element analysis in fluid mechanics, algorithms for difference of monotone operators, a vibrational approach to a financial problem, and more. This volume is useful to graduate students and researchers working in mathematics, physics, engineering, and economics.
Download or read book An Introduction to Metric Spaces and Fixed Point Theory written by Mohamed A. Khamsi and published by John Wiley & Sons. This book was released on 2011-10-14 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diese Einfuhrung in das Gebiet der metrischen Raume richtet sich in erster Linie nicht an Spezialisten, sondern an Anwender der Methode aus den verschiedensten Bereichen der Naturwissenschaften. Besonders ausfuhrlich und anschaulich werden die Grundlagen von metrischen Raumen und Banach-Raumen erklart, Anhange enthalten Informationen zu verschiedenen Schlusselkonzepten der Mengentheorie (Zornsches Lemma, Tychonov-Theorem, transfinite Induktion usw.). Die hinteren Kapitel des Buches beschaftigen sich mit fortgeschritteneren Themen.
Download or read book Gradient Flows written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2008-10-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
Download or read book Topics in Metric Fixed Point Theory written by Kazimierz Goebel and published by Cambridge University Press. This book was released on 1990 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.
Download or read book Metric Fixed Point Theory written by Pradip Debnath and published by Springer Nature. This book was released on 2022-01-04 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects chapters on contemporary topics on metric fixed point theory and its applications in science, engineering, fractals, and behavioral sciences. Chapters contributed by renowned researchers from across the world, this book includes several useful tools and techniques for the development of skills and expertise in the area. The book presents the study of common fixed points in a generalized metric space and fixed point results with applications in various modular metric spaces. New insight into parametric metric spaces as well as study of variational inequalities and variational control problems have been included.
Download or read book Fixed Point Theory in Metric Type Spaces written by Ravi P. Agarwal and published by Springer. This book was released on 2016-03-24 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research.
Download or read book Introduction to Metric and Topological Spaces written by Wilson A Sutherland and published by Oxford University Press. This book was released on 2009-06-18 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the ways in which topology has influenced other branches of mathematics in the past few decades is by putting the study of continuity and convergence into a general setting. This new edition of Wilson Sutherland's classic text introduces metric and topological spaces by describing some of that influence. The aim is to move gradually from familiar real analysis to abstract topological spaces, using metric spaces as a bridge between the two. The language of metric and topological spaces is established with continuity as the motivating concept. Several concepts are introduced, first in metric spaces and then repeated for topological spaces, to help convey familiarity. The discussion develops to cover connectedness, compactness and completeness, a trio widely used in the rest of mathematics. Topology also has a more geometric aspect which is familiar in popular expositions of the subject as `rubber-sheet geometry', with pictures of Möbius bands, doughnuts, Klein bottles and the like; this geometric aspect is illustrated by describing some standard surfaces, and it is shown how all this fits into the same story as the more analytic developments. The book is primarily aimed at second- or third-year mathematics students. There are numerous exercises, many of the more challenging ones accompanied by hints, as well as a companion website, with further explanations and examples as well as material supplementary to that in the book.
Download or read book Current Trends in Analysis and Its Applications written by Vladimir V. Mityushev and published by Birkhäuser. This book was released on 2015-02-04 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of papers from the 9th International ISAAC Congress held in 2013 in Kraków, Poland. The papers are devoted to recent results in mathematics, focused on analysis and a wide range of its applications. These include up-to-date findings of the following topics: - Differential Equations: Complex and Functional Analytic Methods - Nonlinear PDE - Qualitative Properties of Evolution Models - Differential and Difference Equations - Toeplitz Operators - Wavelet Theory - Topological and Geometrical Methods of Analysis - Queueing Theory and Performance Evaluation of Computer Networks - Clifford and Quaternion Analysis - Fixed Point Theory - M-Frame Constructions - Spaces of Differentiable Functions of Several Real Variables Generalized Functions - Analytic Methods in Complex Geometry - Topological and Geometrical Methods of Analysis - Integral Transforms and Reproducing Kernels - Didactical Approaches to Mathematical Thinking Their wide applications in biomathematics, mechanics, queueing models, scattering, geomechanics etc. are presented in a concise, but comprehensible way, such that further ramifications and future directions can be immediately seen.
Download or read book Open Problems in Topology II written by Elliott M. Pearl and published by Elsevier. This book was released on 2011-08-11 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of surveys of research problems in topology and its applications. The topics covered include general topology, set-theoretic topology, continuum theory, topological algebra, dynamical systems, computational topology and functional analysis.* New surveys of research problems in topology* New perspectives on classic problems* Representative surveys of research groups from all around the world