EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book GENERALIZED INTEGRAL TRANSFORMS OF DISTRIBUTIONS

Download or read book GENERALIZED INTEGRAL TRANSFORMS OF DISTRIBUTIONS written by Dr. B. B. Waphare and published by Lulu Publication. This book was released on 2021-02-03 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1.1 Introduction In recent years, integral transforms have become essential working tools of every engineer and applied scientist. The Laplace transform, which undoubtedly is the most familiar example, is being suited to solving boundary value problems. The classical methods of solution of initial and boundary value problems in physics and engineering sciences have their roots in Fourier’s pioneering work. An alternative approach through integral transforms methods emerged primarily through Heaviside’s efforts on operational techniques. In addition to being of great theoretical interest to mathematicians, integral transform methods have been found to provide easy and effective ways of solving a variety of problems arising in engineering and physical science. The use of integral transforms is somewhat analogous to that of logarithms. That is, a problem involving multiplication or division can be reduced to one involving simple processes addition or subtraction by taking logarithms. For almost two centuries the method of function transformations has been used successfully in solving many problems in engineering, mathematical physics and applied mathematics. Function transformations include, but are not limited to the well-known technique of linear integral transformations. A function transformation simply means a mathematical operation through which a real or complex valued function f is transformed into an other F, or into a sequence of numbers, or more generally into a set of data. Since its birth in the 1780’s in the work of the great mathematician Laplace, on probability theory, the theory of function transformations has flourished and continues to do so. In the last few years, in particular, it has received a great impetus from the advent of wavelets. Not only is the wavelet transform an example of how practical function transformations can be, but it is also an example of a transformation that has gone beyond what it was designed to do as a technique. It has contributed to the development of modern mathematical analysis just as the Fourier transformation contributed to the advancement of classical analysis in the earliest years of the nineteenth century.

Book Integral Transforms of Generalized Functions and Their Applications

Download or read book Integral Transforms of Generalized Functions and Their Applications written by Ram Shankar Pathak and published by Routledge. This book was released on 2017-07-05 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: For those who have a background in advanced calculus, elementary topology and functional analysis - from applied mathematicians and engineers to physicists - researchers and graduate students alike - this work provides a comprehensive analysis of the many important integral transforms and renders particular attention to all of the technical aspects of the subject. The author presents the last two decades of research and includes important results from other works.

Book Integral Transforms of Generalized Functions

Download or read book Integral Transforms of Generalized Functions written by Brychkov and published by CRC Press. This book was released on 1989-04-20 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: English translation (from revised and enlarged versions of the Russian editions of 1977 and 1984) of a reference work which makes available to engineers, physicists and applied mathematicians theoretical and tabular material pertaining to certain extensions of standard integral transform techniques. Diverse transforms are touched upon, but the emphasis (particularly in the tables) is on generalized Fourier and Laplace transforms. Some multi-dimensional results are presented. Expensive, but nicely produced, and redundant with nothing standard to the reference shelves of mathematical libraries. (NW) Annotation copyrighted by Book News, Inc., Portland, OR

Book A Guide to Distribution Theory and Fourier Transforms

Download or read book A Guide to Distribution Theory and Fourier Transforms written by Robert S. Strichartz and published by World Scientific. This book was released on 2003 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.

Book The Hilbert Transform of Schwartz Distributions and Applications

Download or read book The Hilbert Transform of Schwartz Distributions and Applications written by J. N. Pandey and published by John Wiley & Sons. This book was released on 2011-10-14 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a modern and up-to-date treatment of the Hilberttransform of distributions and the space of periodic distributions.Taking a simple and effective approach to a complex subject, thisvolume is a first-rate textbook at the graduate level as well as anextremely useful reference for mathematicians, applied scientists,and engineers. The author, a leading authority in the field, shares with thereader many new results from his exhaustive research on the Hilberttransform of Schwartz distributions. He describes in detail how touse the Hilbert transform to solve theoretical and physicalproblems in a wide range of disciplines; these include aerofoilproblems, dispersion relations, high-energy physics, potentialtheory problems, and others. Innovative at every step, J. N. Pandey provides a new definitionfor the Hilbert transform of periodic functions, which isespecially useful for those working in the area of signalprocessing for computational purposes. This definition could alsoform the basis for a unified theory of the Hilbert transform ofperiodic, as well as nonperiodic, functions. The Hilbert transform and the approximate Hilbert transform ofperiodic functions are worked out in detail for the first time inbook form and can be used to solve Laplace's equation with periodicboundary conditions. Among the many theoretical results proved inthis book is a Paley-Wiener type theorem giving thecharacterization of functions and generalized functions whoseFourier transforms are supported in certain orthants of Rn. Placing a strong emphasis on easy application of theory andtechniques, the book generalizes the Hilbert problem in higherdimensions and solves it in function spaces as well as ingeneralized function spaces. It simplifies the one-dimensionaltransform of distributions; provides solutions to thedistributional Hilbert problems and singular integral equations;and covers the intrinsic definition of the testing function spacesand its topology. The book includes exercises and review material for all majortopics, and incorporates classical and distributional problems intothe main text. Thorough and accessible, it explores new ways to usethis important integral transform, and reinforces its value in bothmathematical research and applied science. The Hilbert transform made accessible with many new formulas anddefinitions Written by today's foremost expert on the Hilbert transform ofgeneralized functions, this combined text and reference covers theHilbert transform of distributions and the space of periodicdistributions. The author provides a consistently accessibletreatment of this advanced-level subject and teaches techniquesthat can be easily applied to theoretical and physical problemsencountered by mathematicians, applied scientists, and graduatestudents in mathematics and engineering. Introducing many new inversion formulas that have been developedand applied by the author and his research associates, the book: * Provides solutions to the distributional Hilbert problem andsingular integral equations * Focuses on the Hilbert transform of Schwartz distributions,giving intrinsic definitions of the space H(D) and its topology * Covers the Paley-Wiener theorem and provides many importanttheoretical results of importance to research mathematicians * Provides the characterization of functions and generalizedfunctions whose Fourier transforms are supported in certainorthants of Rn * Offers a new definition of the Hilbert transform of the periodicfunction that can be used for computational purposes in signalprocessing * Develops the theory of the Hilbert transform of periodicdistributions and the approximate Hilbert transform of periodicdistributions * Provides exercises at the end of each chapter--useful toprofessors in planning assignments, tests, and problems

Book Integral Transformations  Operational Calculus  and Generalized Functions

Download or read book Integral Transformations Operational Calculus and Generalized Functions written by R.G. Buschman and published by Springer. This book was released on 2013-11-26 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function".

Book Integral Transforms of Generalized Functions and Their Applications

Download or read book Integral Transforms of Generalized Functions and Their Applications written by Ram Shankar Pathak and published by Routledge. This book was released on 2017-07-05 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: For those who have a background in advanced calculus, elementary topology and functional analysis - from applied mathematicians and engineers to physicists - researchers and graduate students alike - this work provides a comprehensive analysis of the many important integral transforms and renders particular attention to all of the technical aspects of the subject. The author presents the last two decades of research and includes important results from other works.

Book Handbook of Function and Generalized Function Transformations

Download or read book Handbook of Function and Generalized Function Transformations written by Ahmed I. Zayed and published by CRC Press. This book was released on 1996-05-15 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: Function transformations, which include linear integral transformations, are some of the most important mathematical tools for solving problems in all areas of engineering and the physical sciences. They allow one to quickly solve a problem by breaking it down into a series of smaller, more manageable problems. The author has compiled the most important and widely used of these function transforms in applied mathematics and electrical engineering. In addition to classical transforms, newer transforms such as wavelets, Zak, and Radon are included. The book is neither a table of transforms nor a textbook, but it is a source book that provides quick and easy access to the most important properties and formulas of function and generalized function transformations. It is organized for convenient reference, with chapters broken down into the following sections:

Book Transform Analysis of Generalized Functions

Download or read book Transform Analysis of Generalized Functions written by O.P. Misra and published by Elsevier. This book was released on 1986-01-01 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transform Analysis of Generalized Functions concentrates on finite parts of integrals, generalized functions and distributions. It gives a unified treatment of the distributional setting with transform analysis, i.e. Fourier, Laplace, Stieltjes, Mellin, Hankel and Bessel Series.Included are accounts of applications of the theory of integral transforms in a distributional setting to the solution of problems arising in mathematical physics. Information on distributional solutions of differential, partial differential equations and integral equations is conveniently collected here.The volume will serve as introductory and reference material for those interested in analysis, applications, physics and engineering.

Book Generalized Integral Transforms In Mathematical Finance

Download or read book Generalized Integral Transforms In Mathematical Finance written by Andrey Itkin and published by World Scientific. This book was released on 2021-10-12 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes several techniques, first invented in physics for solving problems of heat and mass transfer, and applies them to various problems of mathematical finance defined in domains with moving boundaries. These problems include: (a) semi-closed form pricing of options in the one-factor models with time-dependent barriers (Bachelier, Hull-White, CIR, CEV); (b) analyzing an interconnected banking system in the structural credit risk model with default contagion; (c) finding first hitting time density for a reducible diffusion process; (d) describing the exercise boundary of American options; (e) calculating default boundary for the structured default problem; (f) deriving a semi-closed form solution for optimal mean-reverting trading strategies; to mention but some.The main methods used in this book are generalized integral transforms and heat potentials. To find a semi-closed form solution, we need to solve a linear or nonlinear Volterra equation of the second kind and then represent the option price as a one-dimensional integral. Our analysis shows that these methods are computationally more efficient than the corresponding finite-difference methods for the backward or forward Kolmogorov PDEs (partial differential equations) while providing better accuracy and stability.We extend a large number of known results by either providing solutions on complementary or extended domains where the solution is not known yet or modifying these techniques and applying them to new types of equations, such as the Bessel process. The book contains several novel results broadly applicable in physics, mathematics, and engineering.

Book Distribution Theory and Transform Analysis

Download or read book Distribution Theory and Transform Analysis written by A.H. Zemanian and published by Courier Corporation. This book was released on 2011-11-30 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distribution theory, a relatively recent mathematical approach to classical Fourier analysis, not only opened up new areas of research but also helped promote the development of such mathematical disciplines as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. This text was one of the first to give a clear explanation of distribution theory; it combines the theory effectively with extensive practical applications to science and engineering problems. Based on a graduate course given at the State University of New York at Stony Brook, this book has two objectives: to provide a comparatively elementary introduction to distribution theory and to describe the generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. After an introductory chapter defining distributions and the operations that apply to them, Chapter 2 considers the calculus of distributions, especially limits, differentiation, integrations, and the interchange of limiting processes. Some deeper properties of distributions, such as their local character as derivatives of continuous functions, are given in Chapter 3. Chapter 4 introduces the distributions of slow growth, which arise naturally in the generalization of the Fourier transformation. Chapters 5 and 6 cover the convolution process and its use in representing differential and difference equations. The distributional Fourier and Laplace transformations are developed in Chapters 7 and 8, and the latter transformation is applied in Chapter 9 to obtain an operational calculus for the solution of differential and difference equations of the initial-condition type. Some of the previous theory is applied in Chapter 10 to a discussion of the fundamental properties of certain physical systems, while Chapter 11 ends the book with a consideration of periodic distributions. Suitable for a graduate course for engineering and science students or for a senior-level undergraduate course for mathematics majors, this book presumes a knowledge of advanced calculus and the standard theorems on the interchange of limit processes. A broad spectrum of problems has been included to satisfy the diverse needs of various types of students.

Book The Radon Transform

    Book Details:
  • Author : Sigurdur Helgason
  • Publisher : Springer Science & Business Media
  • Release : 1999-08-01
  • ISBN : 9780817641092
  • Pages : 214 pages

Download or read book The Radon Transform written by Sigurdur Helgason and published by Springer Science & Business Media. This book was released on 1999-08-01 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.

Book Distribution  Integral Transforms and Applications

Download or read book Distribution Integral Transforms and Applications written by W. Kierat and published by CRC Press. This book was released on 2003-01-16 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of distributions is most often presented as L. Schwartz originally presented it: as a theory of the duality of topological vector spaces. Although this is a sound approach, it can be difficult, demanding deep prior knowledge of functional analysis. The more elementary treatments that are available often consider distributions as limits o

Book Distributional Integral Transforms

Download or read book Distributional Integral Transforms written by P.K. Banerjee and published by Scientific Publishers. This book was released on 2005-09-01 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present Learned Research Work is an exhaustive survey and researches carried out by the authors, which led to the theories of distributions, generalized functions and transforms involving them, which includes interesting results and the fundamental concepts of the youngest generalization of Schwartz theory of distributions, the Boehmians. The tempered distribution and utilizations have been described, which provide suitable platforms for the generalizations of Fourier transforms, Stieltjes and Mellin transforms. To overcome the Fourier series this work includes wavelet transform, for which meticulous extensive study of the existing literature has been produced including recent researches carried out by the authors. This compilation, in the form of the present book, is believed to be of help to researchers in the field of distribution and transform analysis and, may even be treated as the reference book to post graduate students.

Book Theory of Distributions

Download or read book Theory of Distributions written by Svetlin G. Georgiev and published by Springer. This book was released on 2015-07-13 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains many fundamental ideas on the theory of distributions. The theory of partial differential equations is one of the synthetic branches of analysis that combines ideas and methods from different fields of mathematics, ranging from functional analysis and harmonic analysis to differential geometry and topology. This presents specific difficulties to those studying this field. This book, which consists of 10 chapters, is suitable for upper undergraduate/graduate students and mathematicians seeking an accessible introduction to some aspects of the theory of distributions. It can also be used for one-semester course.

Book The Selected Works of Roderick S C Wong

Download or read book The Selected Works of Roderick S C Wong written by Dan Dai and published by World Scientific. This book was released on 2015-08-06 with total page 1557 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection, in three volumes, presents the scientific achievements of Roderick S C Wong, spanning 45 years of his career. It provides a comprehensive overview of the author's work which includes significant discoveries and pioneering contributions, such as his deep analysis on asymptotic approximations of integrals and uniform asymptotic expansions of orthogonal polynomials and special functions; his important contributions to perturbation methods for ordinary differential equations and difference equations; and his advocation of the Riemann–Hilbert approach for global asymptotics of orthogonal polynomials. The book is an essential source of reference for mathematicians, statisticians, engineers, and physicists. It is also a suitable reading for graduate students and interested senior year undergraduate students. Contents:Volume 1:The Asymptotic Behaviour of μ(z, β,α)A Generalization of Watson's LemmaLinear Equations in Infinite MatricesAsymptotic Solutions of Linear Volterra Integral Equations with Singular KernelsOn Infinite Systems of Linear Differential EquationsError Bounds for Asymptotic Expansions of HankelExplicit Error Terms for Asymptotic Expansions of StieltjesExplicit Error Terms for Asymptotic Expansions of MellinAsymptotic Expansion of Multiple Fourier TransformsExact Remainders for Asymptotic Expansions of FractionalAsymptotic Expansion of the Hilbert TransformError Bounds for Asymptotic Expansions of IntegralsDistributional Derivation of an Asymptotic ExpansionOn a Method of Asymptotic Evaluation of Multiple IntegralsAsymptotic Expansion of the Lebesgue Constants Associated with Polynomial InterpolationQuadrature Formulas for Oscillatory Integral TransformsGeneralized Mellin Convolutions and Their Asymptotic Expansions,A Uniform Asymptotic Expansion of the Jacobi Polynomials with Error BoundsAsymptotic Expansion of a Multiple IntegralAsymptotic Expansion of a Double Integral with a Curve of Stationary PointsSzegö's Conjecture on Lebesgue Constants for Legendre SeriesUniform Asymptotic Expansions of Laguerre PolynomialsTransformation to Canonical Form for Uniform Asymptotic ExpansionsMultidimensional Stationary Phase Approximation: Boundary Stationary PointTwo-Dimensional Stationary Phase Approximation: Stationary Point at a CornerAsymptotic Expansions for Second-Order Linear Difference EquationsAsymptotic Expansions for Second-Order Linear Difference Equations, IIAsymptotic Behaviour of the Fundamental Solution to ∂u/∂t = –(–Δ)muA Bernstein-Type Inequality for the Jacobi PolynomialError Bounds for Asymptotic Expansions of Laplace ConvolutionsVolume 2:Asymptotic Behavior of the Pollaczek Polynomials and Their ZerosJustification of the Stationary Phase Approximation in Time-Domain AsymptoticsAsymptotic Expansions of the Generalized Bessel PolynomialsUniform Asymptotic Expansions for Meixner Polynomials"Best Possible" Upper and Lower Bounds for the Zeros of the Bessel Function Jν(x)Justification of a Perturbation Approximation of the Klein–Gordon EquationSmoothing of Stokes's Discontinuity for the Generalized Bessel Function. IIUniform Asymptotic Expansions of a Double Integral: Coalescence of Two Stationary PointsUniform Asymptotic Formula for Orthogonal Polynomials with Exponential WeightOn the Asymptotics of the Meixner–Pollaczek Polynomials and Their ZerosGevrey Asymptotics and Stieltjes Transforms of Algebraically Decaying FunctionsExponential Asymptotics of the Mittag–Leffler FunctionOn the Ackerberg–O'Malley ResonanceAsymptotic Expansions for Second-Order Linear Difference Equations with a Turning PointOn a Two-Point Boundary-Value Problem with Spurious SolutionsShooting Method for Nonlinear Singularly Perturbed Boundary-Value ProblemsVolume 3:Asymptotic Expansion of the Krawtchouk Polynomials and Their ZerosOn a Uniform Treatment of Darboux's MethodLinear Difference Equations with Transition PointsUniform Asymptotics for Jacobi Polynomials with Varying Large Negative Parameters — A Riemann–Hilbert ApproachUniform Asymptotics of the Stieltjes–Wigert Polynomials via the Riemann–Hilbert ApproachA Singularly Perturbed Boundary-Value Problem Arising in Phase TransitionsOn the Number of Solutions to Carrier's ProblemAsymptotic Expansions for Riemann–Hilbert ProblemsOn the Connection Formulas of the Third Painlevé TranscendentHyperasymptotic Expansions of the Modified Bessel Function of the Third Kind of Purely Imaginary OrderGlobal Asymptotics for Polynomials Orthogonal with Exponential Quartic WeightThe Riemann–Hilbert Approach to Global Asymptotics of Discrete Orthogonal Polynomials with Infinite NodesGlobal Asymptotics of the Meixner PolynomialsAsymptotics of Orthogonal Polynomials via Recurrence RelationsUniform Asymptotic Expansions for the Discrete Chebyshev PolynomialsGlobal Asymptotics of the Hahn PolynomialsGlobal Asymptotics of Stieltjes–Wigert Polynomials Readership: Undergraduates, gradudates and researchers in the areas of asymptotic approximations of integrals, singular perturbation theory, difference equations and Riemann–Hilbert approach. Key Features:This book provides a broader viewpoint of asymptoticsIt contains about half of the papers that Roderick Wong has written on asymptoticsIt demonstrates how analysis is used to make some formal results mathematically rigorousThis collection presents the scientific achievements of the authorKeywords:Asymptotic Analysis;Perturbation Method;Special Functions;Orthogonal Polynomials;Integral Transforms;Integral Equations;Ordinary Differential Equations;Difference Equations;Riemann–Hilbert Problem

Book Integral Transformations  Operational Calculus and Their Applications

Download or read book Integral Transformations Operational Calculus and Their Applications written by Hari Mohan Srivastava and published by MDPI. This book was released on 2021-01-20 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of a collection of 14 accepted submissions (including several invited feature articles) to the Special Issue of MDPI's journal Symmetry on the general subject area of integral transformations, operational calculus and their applications from many different parts around the world. The main objective of the Special Issue was to gather review, expository, and original research articles dealing with the state-of-the-art advances in integral transformations and operational calculus as well as their multidisciplinary applications, together with some relevance to the aspect of symmetry. Various families of fractional-order integrals and derivatives have been found to be remarkably important and fruitful, mainly due to their demonstrated applications in numerous diverse and widespread areas of mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables.