EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Gas Phase Reaction Rate Theory

Download or read book Gas Phase Reaction Rate Theory written by Harold S. Johnston and published by . This book was released on 1966 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reaction Rate Theory and Rare Events

Download or read book Reaction Rate Theory and Rare Events written by Baron Peters and published by Elsevier. This book was released on 2017-03-22 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reaction Rate Theory and Rare Events bridges the historical gap between these subjects because the increasingly multidisciplinary nature of scientific research often requires an understanding of both reaction rate theory and the theory of other rare events. The book discusses collision theory, transition state theory, RRKM theory, catalysis, diffusion limited kinetics, mean first passage times, Kramers theory, Grote-Hynes theory, transition path theory, non-adiabatic reactions, electron transfer, and topics from reaction network analysis. It is an essential reference for students, professors and scientists who use reaction rate theory or the theory of rare events. In addition, the book discusses transition state search algorithms, tunneling corrections, transmission coefficients, microkinetic models, kinetic Monte Carlo, transition path sampling, and importance sampling methods. The unified treatment in this book explains why chemical reactions and other rare events, while having many common theoretical foundations, often require very different computational modeling strategies. Offers an integrated approach to all simulation theories and reaction network analysis, a unique approach not found elsewhere Gives algorithms in pseudocode for using molecular simulation and computational chemistry methods in studies of rare events Uses graphics and explicit examples to explain concepts Includes problem sets developed and tested in a course range from pen-and-paper theoretical problems, to computational exercises

Book Gas Phase Reactions

    Book Details:
  • Author : V.N. Kondratiev
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642676081
  • Pages : 254 pages

Download or read book Gas Phase Reactions written by V.N. Kondratiev and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present monograph appears after the death of Professor V. N. Kondratiev, one of those scientists who have greatly contributed to the foundation of contem porary gas kinetics. The most fundamental idea of chemical kinetics, put for ward at the beginning of the twentieth century and connected with names such as W. Nernst, M. Bodenstein, N. N. Semenov, and C. N. Hinshelwood, was that the complex chemical reactions are in fact a manifestation of a set of simpler elementary reactions involving but a small number of species. V. N. Kondratiev was one of the first to adopt this idea and to start investigations on the elementary chemical reactions proper. These investigations revealed explicitly that every elementary reaction in turn consisted of many elementary events usually referred to as elementary processes. It took some time to realize that an elementary reaction, represented in a very simple way by a macroscopic kinetic equation, can be described on a microscopic level by a generalized Boltzmann equation. Neverheless, up to the middle of the twentieth century, gas kinetics was mainly concerned with the interpretation of complex chemical reactions via a set of elementary reactions. But later on, the situation changed drastically. First, the conditions for reducing microscopic cquations to macroscopic ones were clearly set up. These are essentially based on the fact that the small perturbations of the Maxwell-Boltzmann distribution are caused by the reaction proper.

Book Chemistry 2e

    Book Details:
  • Author : Paul Flowers
  • Publisher :
  • Release : 2019-02-14
  • ISBN : 9781947172623
  • Pages : 0 pages

Download or read book Chemistry 2e written by Paul Flowers and published by . This book was released on 2019-02-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.

Book Physical Chemistry for the Biosciences

Download or read book Physical Chemistry for the Biosciences written by Raymond Chang and published by University Science Books. This book was released on 2005-02-11 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is ideal for use in a one-semester introductory course in physical chemistry for students of life sciences. The author's aim is to emphasize the understanding of physical concepts rather than focus on precise mathematical development or on actual experimental details. Subsequently, only basic skills of differential and integral calculus are required for understanding the equations. The end-of-chapter problems have both physiochemical and biological applications.

Book Kinetics and Dynamics of Elementary Gas Reactions

Download or read book Kinetics and Dynamics of Elementary Gas Reactions written by Ian W. M. Smith and published by Butterworth-Heinemann. This book was released on 2013-10-22 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kinetics and Dynamics of Elementary Gas Reactions surveys the state of modern knowledge on elementary gas reactions to understand natural phenomena in terms of molecular behavior. Part 1 of this book describes the theoretical and conceptual background of elementary gas-phase reactions, emphasizing the assumptions and limitations of each theoretical approach, as well as its strengths. In Part 2, selected experimental results are considered to demonstrate the scope of present day techniques and illustrate the application of the theoretical ideas introduced in Part 1. This publication is intended primarily for working kineticists and chemists, but is also beneficial to graduate students.

Book Kinetics and Mechanism

    Book Details:
  • Author : John W. Moore
  • Publisher : John Wiley & Sons
  • Release : 1981-09-30
  • ISBN : 9780471035589
  • Pages : 486 pages

Download or read book Kinetics and Mechanism written by John W. Moore and published by John Wiley & Sons. This book was released on 1981-09-30 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third edition of a classic text originally by Frost and Pearson, that describes the fundamental principles and established practices that apply to the study and the rates and mechanisms of homogeneous chemical reactions in the gas phase and in solution. Incorporates new advances made during the past 20 years in the study of individual molecular collisions by molecular-beam, laser applications to experimental kinetics, theoretical treatments of reaction rates and our understanding of the principles that govern rates of reaction in solution. Presents numerous examples of the deduction of mechanism from experiment, including intimate details such as stereochemistry and the dependence of reaction pathway on the exact energy states of reacting particles.

Book Basic Reaction Kinetics and Mechanisms

Download or read book Basic Reaction Kinetics and Mechanisms written by Harold Eric Avery and published by Palgrave. This book was released on 1974 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reaction Kinetics

    Book Details:
  • Author : Keith J. Laidler
  • Publisher : Elsevier
  • Release : 2013-10-22
  • ISBN : 1483222411
  • Pages : 263 pages

Download or read book Reaction Kinetics written by Keith J. Laidler and published by Elsevier. This book was released on 2013-10-22 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reactions Kinetics: Volume I: Homogeneous Gas Reactions presents a general introduction to the subject of kinetics, including the basic laws of kinetics and the theoretical treatment of reaction rates. This four-chapter book deals mainly with homogeneous reactions in the gas phase. Chapter 1 presents the kinetic laws based on experimental results in terms of their simple concepts, with a special consideration of the way in which rates depend on concentration, while Chapter 2 deals with the interpretation of rates in terms of more fundamental theories. Chapter 3 covers the overall reactions that are believed to be elementary, such as the reaction between hydrogen and iodine, the reverse decomposition of hydrogen iodide, the corresponding reactions involving deuterium instead of hydrogen, and the dimerizations of butadiene and cyclopentadiene, as well as a few elementary termolecular reactions, all involving nitric oxide. This chapter also includes a general account of some of the elementary reactions that occur as steps in more complex mechanisms. Chapter 4 examines the reaction rates of numerous complex gas reactions. Undergraduate physical chemistry and chemical kinetics students, as well as advanced students in other fields, such as biology and physics, will find this book invaluable.

Book Gas Phase Metal Reactions

Download or read book Gas Phase Metal Reactions written by A. Fontijn and published by Elsevier. This book was released on 2017-05-04 with total page 711 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book brings together, for the first time, all aspects of reactions of metallic species in the gas phase and gives an up-to-date overview of the field. Reactions covered include those of atomic, other free radical and transient neutral species, as well as ions. Experimental and theoretical work is reviewed and the efforts to establish a closer link between these approaches are discussed. The field is mainly approached from a fundamental point-of-view, but the applied problems which have helped stimulate the interest are pointed out and form the major subject of the final chapters. These emphasize the competition between purely gas-phase and gas-surface reactions.

Book Theories of Molecular Reaction Dynamics

Download or read book Theories of Molecular Reaction Dynamics written by Niels E. Henriksen and published by Oxford University Press on Demand. This book was released on 2008 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with a central topic at the interface of chemistry and physics - the understanding of how the transformation of matter takes place at the atomic level. Building on the laws of physics, the book focuses on the theoretical framework for predicting the outcome of chemical reactions. The style is highly systematic with attention to basic concepts and clarity of presentation. Molecular reaction dynamics is about the detailed atomic-level description of chemical reactions. Based on quantum mechanics and statistical mechanics or, as an approximation, classical mechanics, the dynamics of uni- and bi-molecular elementary reactions are described. The book features a detailed presentation of transition-state theory which plays an important role in practice, and a comprehensive discussion of basic theories of reaction dynamics in condensed phases. Examples and end-of-chapter problems are included in order to illustrate the theory and its connection to chemical problems.

Book Chemistry of the Upper and Lower Atmosphere

Download or read book Chemistry of the Upper and Lower Atmosphere written by Barbara J. Finlayson-Pitts and published by Elsevier. This book was released on 1999-11-17 with total page 993 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is the most comprehensive and up-to-date treatment of one of the hottest areas of chemical research. The treatment of fundamental kinetics and photochemistry will be highly useful to chemistry students and their instructors at the graduate level, as well as postdoctoral fellows entering this new, exciting, and well-funded field with a Ph.D. in a related discipline (e.g., analytical, organic, or physical chemistry, chemical physics, etc.). Chemistry of the Upper and Lower Atmosphere provides postgraduate researchers and teachers with a uniquely detailed, comprehensive, and authoritative resource. The text bridges the "gap" between the fundamental chemistry of the earth's atmosphere and "real world" examples of its application to the development of sound scientific risk assessments and associated risk management control strategies for both tropospheric and stratospheric pollutants. Serves as a graduate textbook and "must have" reference for all atmospheric scientists Provides more than 5000 references to the literature through the end of 1998 Presents tables of new actinic flux data for the troposphere and stratospher (0-40km) Summarizes kinetic and photochemical date for the troposphere and stratosphere Features problems at the end of most chapters to enhance the book's use in teaching Includes applications of the OZIPR box model with comprehensive chemistry for student use

Book Concise Encyclopedia of Self Propagating High Temperature Synthesis

Download or read book Concise Encyclopedia of Self Propagating High Temperature Synthesis written by Inna P. Borovinskaya and published by Elsevier. This book was released on 2017-06-09 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Concise Encyclopedia of Self-Propagating High-Temperature Synthesis: History, Theory, Technology, and Products helps students and scientists understand the fundamental concepts behind self-propagating high-temperature synthesis (SHS). SHS-based technologies provide valuable alterations to traditional methods of material fabrication, such as powder metallurgy, conventional and force sintering, casting, extrusion, high isostatic pressure sintering, and others. The book captures the whole spectrum of the chemistry, physics, reactions, materials, and processes of self-propagating high-temperature synthesis. This book is an indispensable resource not only to scientists working in the field of SHS, but also to researchers in multidisciplinary fields such as chemical engineering, metallurgy, material science, combustion, explosion, and the chemistry of solids. Written by high-level experts in the field from 20 different countries, along with editors who are founders of the field Covers 169 topics in the field of SHS Features new phenomena, such as acoustics and high-energy reactions in combustion synthesis Provides an overview of many aspects of the constructive application of the combustion phenomenon, for example, in the fabrication of advanced materials

Book Gas Phase Combustion Chemistry

    Book Details:
  • Author : W.C., Jr. Gardiner
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 146121310X
  • Pages : 553 pages

Download or read book Gas Phase Combustion Chemistry written by W.C., Jr. Gardiner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superseding Gardiner's "Combustion Chemistry", this is an updated, comprehensive coverage of those aspects of combustion chemistry relevant to gas-phase combustion of hydrocarbons. The book includes an extended discussion of air pollutant chemistry and aspects of combustion, and reviews elementary reactions of nitrogen, sulfur and chlorine compounds that are relevant to combustion. Methods of combustion modeling and rate coefficient estimation are presented, as well as access to databases for combustion thermochemistry and modeling.

Book Chemical Thermodynamics  Advanced Applications

Download or read book Chemical Thermodynamics Advanced Applications written by J. Bevan Ott and published by Elsevier. This book was released on 2000-06-16 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an excellent companion to Chemical Thermodynamics: Principles and Applications. Together they make a complete reference set for the practicing scientist. This volume extends the range of topics and applications to ones that are not usually covered in a beginning thermodynamics text. In a sense, the book covers a "middle ground" between the basic principles developed in a beginning thermodynamics textbook, and the very specialized applications that are a part of an ongoing research project. As such, it could prove invaluable to the practicing scientist who needs to apply thermodynamic relationships to aid in the understanding of the chemical process under consideration. The writing style in this volume remains informal, but more technical than in Principles and Applications. It starts with Chapter 11, which summarizes the thermodynamic relationships developed in this earlier volume. For those who want or need more detail, references are given to the sections in Principles and Applications where one could go to learn more about the development, limitations, and conditions where these equations apply. This is the only place where Advanced Applications ties back to the previous volume. Chapter 11 can serve as a review of the fundamental thermodynamic equations that are necessary for the more sophisticated applications described in the remainder of this book. This may be all that is necessary for the practicing scientist who has been away from the field for some time and needs some review. The remainder of this book applies thermodynamics to the description of a variety of problems. The topics covered are those that are probably of the most fundamental and broadest interest. Throughout the book, examples of "real" systems are used as much as possible. This is in contrast to many books where "generic" examples are used almost exclusively. A complete set of references to all sources of data and to supplementary reading sources is included. Problems are given at the end of each chapter. This makes the book ideally suited for use as a textbook in an advanced topics course in chemical thermodynamics. An excellent review of thermodynamic principles and mathematical relationships along with references to the relevant sections in Principles and Applications where these equations are developed Applications of thermodynamics in a wide variety of chemical processes, including phase equilibria, chemical equilibrium, properties of mixtures, and surface chemistry Case-study approach to demonstrate the application of thermodynamics to biochemical, geochemical, and industrial processes Applications at the "cutting edge" of thermodynamics Examples and problems to assist in learning Includes a complete set of references to all literature sources

Book Chemical Kinetics and Transport

Download or read book Chemical Kinetics and Transport written by Peter Jordan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book began as a program of self-education. While teaching under graduate physical chemistry, I became progressively more dissatisfied with my approach to chemical kinetics. The solution to my problem was to write a detailed set of lecture notes which covered more material, in greater depth, than could be presented in undergraduate physical chemistry. These notes are the foundation upon which this book is built. My background led me to view chemical kinetics as closely related to transport phenomena. While the relationship of these topics is well known, it is often ignored, except for brief discussions of irreversible thermody namics. In fact, the physics underlying such apparently dissimilar processes as reaction and energy transfer is not so very different. The intermolecular potential is to transport what the potential-energy surface is to reactivity. Instead of beginning the sections devoted to chemical kinetics with a discussion of various theories, I have chosen to treat phenomenology and mechanism first. In this way the essential unity of kinetic arguments, whether applied to gas-phase or solution-phase reaction, can be emphasized. Theories of rate constants and of chemical dynamics are treated last, so that their strengths and weaknesses may be more clearly highlighted. The book is designed for students in their senior year or first year of graduate school. A year of undergraduate physical chemistry is essential preparation. While further exposure to chemical thermodynamics, statistical thermodynamics, or molecular spectroscopy is an asset, it is not necessary.

Book A Textbook of Physical Chemistry     Volume 1

Download or read book A Textbook of Physical Chemistry Volume 1 written by Mandeep Dalal and published by Dalal Institute. This book was released on 2018-01-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Physical Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential.