Download or read book Fuzzy Sets Rough Sets Multisets and Clustering written by Vicenç Torra and published by Springer. This book was released on 2017-01-13 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making. The book is divided in four parts, the first of which focuses on clustering and classification. The second part puts the spotlight on multisets, bags, fuzzy bags and other fuzzy extensions, while the third deals with rough sets. Rounding out the coverage, the last part explores fuzzy sets and decision-making.
Download or read book Uncertainty Modelling In Knowledge Engineering And Decision Making Proceedings Of The 12th International Flins Conference Flins 2016 written by Xianyi Zeng and published by World Scientific. This book was released on 2016-07-14 with total page 1207 pages. Available in PDF, EPUB and Kindle. Book excerpt: FLINS, originally an acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science, is now extended to include Computational Intelligence for applied research. The contributions to the 12th of FLINS conference cover state-of-the-art research, development, and technology for computational intelligence systems, both from the foundations and the applications points-of-view.
Download or read book Information Processing and Management of Uncertainty in Knowledge Based Systems written by Marie-Jeanne Lesot and published by Springer Nature. This book was released on 2020-06-05 with total page 779 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three volume set (CCIS 1237-1239) constitutes the proceedings of the 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020, in June 2020. The conference was scheduled to take place in Lisbon, Portugal, at University of Lisbon, but due to COVID-19 pandemic it was held virtually. The 173 papers were carefully reviewed and selected from 213 submissions. The papers are organized in topical sections: homage to Enrique Ruspini; invited talks; foundations and mathematics; decision making, preferences and votes; optimization and uncertainty; games; real world applications; knowledge processing and creation; machine learning I; machine learning II; XAI; image processing; temporal data processing; text analysis and processing; fuzzy interval analysis; theoretical and applied aspects of imprecise probabilities; similarities in artificial intelligence; belief function theory and its applications; aggregation: theory and practice; aggregation: pre-aggregation functions and other generalizations of monotonicity; aggregation: aggregation of different data structures; fuzzy methods in data mining and knowledge discovery; computational intelligence for logistics and transportation problems; fuzzy implication functions; soft methods in statistics and data analysis; image understanding and explainable AI; fuzzy and generalized quantifier theory; mathematical methods towards dealing with uncertainty in applied sciences; statistical image processing and analysis, with applications in neuroimaging; interval uncertainty; discrete models and computational intelligence; current techniques to model, process and describe time series; mathematical fuzzy logic and graded reasoning models; formal concept analysis, rough sets, general operators and related topics; computational intelligence methods in information modelling, representation and processing.
Download or read book Information Processing and Management of Uncertainty in Knowledge Based Systems Theory and Foundations written by Jesús Medina and published by Springer. This book was released on 2018-05-30 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three volume set (CCIS 853-855) constitutes the proceedings of the 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2017, held in Cádiz, Spain, in June 2018. The 193 revised full papers were carefully reviewed and selected from 383 submissions. The papers are organized in topical sections on advances on explainable artificial intelligence; aggregation operators, fuzzy metrics and applications; belief function theory and its applications; current techniques to model, process and describe time series; discrete models and computational intelligence; formal concept analysis and uncertainty; fuzzy implication functions; fuzzy logic and artificial intelligence problems; fuzzy mathematical analysis and applications; fuzzy methods in data mining and knowledge discovery; fuzzy transforms: theory and applications to data analysis and image processing; imprecise probabilities: foundations and applications; mathematical fuzzy logic, mathematical morphology; measures of comparison and entropies for fuzzy sets and their extensions; new trends in data aggregation; pre-aggregation functions and generalized forms of monotonicity; rough and fuzzy similarity modelling tools; soft computing for decision making in uncertainty; soft computing in information retrieval and sentiment analysis; tri-partitions and uncertainty; decision making modeling and applications; logical methods in mining knowledge from big data; metaheuristics and machine learning; optimization models for modern analytics; uncertainty in medicine; uncertainty in Video/Image Processing (UVIP).
Download or read book Beyond Traditional Probabilistic Data Processing Techniques Interval Fuzzy etc Methods and Their Applications written by Olga Kosheleva and published by Springer Nature. This book was released on 2020-02-28 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data processing has become essential to modern civilization. The original data for this processing comes from measurements or from experts, and both sources are subject to uncertainty. Traditionally, probabilistic methods have been used to process uncertainty. However, in many practical situations, we do not know the corresponding probabilities: in measurements, we often only know the upper bound on the measurement errors; this is known as interval uncertainty. In turn, expert estimates often include imprecise (fuzzy) words from natural language such as "small"; this is known as fuzzy uncertainty. In this book, leading specialists on interval, fuzzy, probabilistic uncertainty and their combination describe state-of-the-art developments in their research areas. Accordingly, the book offers a valuable guide for researchers and practitioners interested in data processing under uncertainty, and an introduction to the latest trends and techniques in this area, suitable for graduate students.
Download or read book Interactions Between Computational Intelligence and Mathematics written by László T. Kóczy and published by Springer. This book was released on 2018-03-10 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent research in the field of interaction between computational intelligence and mathematics, ranging from theory to applications. Computational intelligence, or soft computing consists of various bio-inspired methods, especially fuzzy systems, artificial neural networks, evolutionary and memetic algorithms. These research areas were initiated by professionals in various applied fields, such as engineers, economists, and financial and medical experts. Although computational intelligence offered solutions (at least quasi-optimal solutions) for problems with high complexity, vague and undeterministic features, initially little attention was paid to the mathematical models and analysis of the methods successfully applied. A typical example is the extremely successful Mamdani-algorithm, and its modifications and extensions, applied since the mid-1970s, where the first analysis of the simplest cases, showing why this algorithm was so efficient and stable, was not given until the early 1990s. Since the mid-2000s, the authors have organized international conferences annually to focus on the mathematical methodological issues in connection with computational intelligence approaches. These conferences have attracted a large number of submissions with a wide scope of topics and quality. The editors selected several high-quality papers and approached the authors to submit an essentially extended and improved book chapter based on the lectures.This volume is the first contributed book on the subject.
Download or read book Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making written by Cengiz Kahraman and published by Springer. This book was released on 2019-07-05 with total page 1386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes the proceedings of the Intelligent and Fuzzy Techniques INFUS 2019 Conference, held in Istanbul, Turkey, on July 23–25, 2019. Big data analytics refers to the strategy of analyzing large volumes of data, or big data, gathered from a wide variety of sources, including social networks, videos, digital images, sensors, and sales transaction records. Big data analytics allows data scientists and various other users to evaluate large volumes of transaction data and other data sources that traditional business systems would be unable to tackle. Data-driven and knowledge-driven approaches and techniques have been widely used in intelligent decision-making, and they are increasingly attracting attention due to their importance and effectiveness in addressing uncertainty and incompleteness. INFUS 2019 focused on intelligent and fuzzy systems with applications in big data analytics and decision-making, providing an international forum that brought together those actively involved in areas of interest to data science and knowledge engineering. These proceeding feature about 150 peer-reviewed papers from countries such as China, Iran, Turkey, Malaysia, India, USA, Spain, France, Poland, Mexico, Bulgaria, Algeria, Pakistan, Australia, Lebanon, and Czech Republic.
Download or read book Graphical Analysis of Covering and Paired Domination in the Environment of Neutrosophic Information written by Sami Ullah Khan and published by Infinite Study. This book was released on with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neutrosophic graph (NG) is a powerful tool in graph theory, which is capable of modeling many real-life problems with uncertainty due to unclear, varying, and indeterminate information. Meanwhile, the fuzzy graphs (FGs) and intuitionistic fuzzy graphs (IFGs) may not handle these problems as efficiently as NGs. It is difficult to model uncertainty due to imprecise information and vagueness in real-world scenarios. Many real-life optimization problems are modeled and solved using the well-known fuzzy graph theory.
Download or read book Information Processing and Management of Uncertainty in Knowledge Based Systems written by Joao Paulo Carvalho and published by Springer. This book was released on 2016-06-10 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set (CCIS 610 and 611) constitute the proceedings of the 16th International Conference on Information processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2016, held in Eindhoven, The Netherlands, in June 2016. The 127 revised full papers presented together with four invited talks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on fuzzy measures and integrals; uncertainty quantification with imprecise probability; textual data processing; belief functions theory and its applications; graphical models; fuzzy implications functions; applications in medicine and bioinformatics; real-world applications; soft computing for image processing; clustering; fuzzy logic, formal concept analysis and rough sets; graded and many-valued modal logics; imperfect databases; multiple criteria decision methods; argumentation and belief revision; databases and information systems; conceptual aspects of data aggregation and complex data fusion; fuzzy sets and fuzzy logic; decision support; comparison measures; machine learning; social data processing; temporal data processing; aggregation.
Download or read book Bounded Rationality in Decision Making Under Uncertainty Towards Optimal Granularity written by Joe Lorkowski and published by Springer. This book was released on 2017-07-01 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses an intriguing question: are our decisions rational? It explains seemingly irrational human decision-making behavior by taking into account our limited ability to process information. It also shows with several examples that optimization under granularity restriction leads to observed human decision-making. Drawing on the Nobel-prize-winning studies by Kahneman and Tversky, researchers have found many examples of seemingly irrational decisions: e.g., we overestimate the probability of rare events. Our explanation is that since human abilities to process information are limited, we operate not with the exact values of relevant quantities, but with “granules” that contain these values. We show that optimization under such granularity indeed leads to observed human behavior. In particular, for the first time, we explain the mysterious empirical dependence of betting odds on actual probabilities. This book can be recommended to all students interested in human decision-making, to researchers whose work involves human decisions, and to practitioners who design and employ systems involving human decision-making —so that they can better utilize our ability to make decisions under uncertainty.
Download or read book Scalable Uncertainty Management written by Steven Schockaert and published by Springer. This book was released on 2016-08-29 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 10th International Conference on Scalable Uncertainty Management, SUM 2016, held in Nice, France, in September 2016. The 18 regular papers and 5 short papers were carefully reviewed and selected from 35 submissions. Papers are solicited in all areas of managing and reasoning with substantial and complex kinds of uncertain, incomplete or inconsistent information. These include (but are not restricted to) applications in decision support systems, risk analysis, machine learning, belief networks, logics of uncertainty, belief revision and update, argumentation, negotiation technologies, semantic web applications, search engines, ontology systems, information fusion, information retrieval, natural language processing, information extraction, image recognition, vision systems, data and text mining, and the consideration of issues such as provenance, trust, heterogeneity, and complexity of data and knowledge.
Download or read book Theory and Applications of Time Series Analysis and Forecasting written by Olga Valenzuela and published by Springer Nature. This book was released on 2023-04-04 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a selection of peer-reviewed contributions on the latest developments in time series analysis and forecasting, presented at the 7th International Conference on Time Series and Forecasting, ITISE 2021, held in Gran Canaria, Spain, July 19-21, 2021. It is divided into four parts. The first part addresses general modern methods and theoretical aspects of time series analysis and forecasting, while the remaining three parts focus on forecasting methods in econometrics, time series forecasting and prediction, and numerous other real-world applications. Covering a broad range of topics, the book will give readers a modern perspective on the subject. The ITISE conference series provides a forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the foundations, theory, models and applications of time series analysis and forecasting. It focuses on interdisciplinary research encompassing computer science, mathematics, statistics and econometrics.
Download or read book Computational Intelligence and Mathematics for Tackling Complex Problems written by László T Kóczy and published by Springer. This book was released on 2019-05-02 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book combines computational intelligence and mathematics to solve theoretical and real-world problems. The real challenges of engineering and other applied sciences, e.g. economics and management, the social sciences, etc., and even everyday life, are increasingly raising complex problems – both in the usual sense, but also in the mathematical and theoretical computer science sense, which is referred to as intractability. Finding exact solutions to the latest problems in mathematics is impossible, and it has been also shown that no further technical advance will ever make it possible to find general and exact solutions to such complex problems. Rather, the goal is to find solutions that are “good enough” or “acceptably accurate,” including models and corresponding algorithms, which is most often achieved by combining traditional mathematical techniques and computational intelligence tools, such as fuzzy systems, evolutionary and memetic algorithms, and artificial neural networks. Consequently, international funding programs, such as the European Commission’s current framework program for research and innovation (Horizon 2020), and the preliminary research team building COST Actions, are devoted to developing new instruments for tackling the challenges that we face in the current technological age. And it goes without saying that research topics concerning the interactions between computational intelligence and traditional mathematics play a key role in overcoming the obstacles associated with the intractability of complex problems. In this book, mathematicians, engineers, and other scientists highlight novel methodological results connecting these two main research areas, and focusing on solving real-life problems.
Download or read book Interactions Between Computational Intelligence and Mathematics Part 2 written by László T. Kóczy and published by Springer. This book was released on 2018-11-02 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent research in the field of interaction between computational intelligence and mathematics. In the current technological age, we face the challenges of tackling very complex problems – in the usual sense, but also in the mathematical and theoretical computer science sense. However, even the most up-to-date results in mathematics, are unable to provide exact solutions of such problems, and no further technical advances will ever make it possible to find general and exact solutions. Constantly developing technologies (including social technologies) necessitate handling very complex problems. This has led to a search for acceptably “good” or precise solutions, which can be achieved by the combination of traditional mathematical techniques and computational intelligence tools, in order to solve the various problems emerging in many different areas to a satisfactory degree. Important funding programs, such as the European Commission’s current framework programme for research and innovation – Horizon 2020 – are devoted to the development of new instruments to deal with the current challenges. Without doubt, research topics associated with the interactions between computational intelligence and traditional mathematics play a key role. Presenting contributions from engineers, scientists and mathematicians, this book offers a series of novel solutions for meaningful and real-world problems that connect those research areas.
Download or read book Soft Computing Evaluation Logic written by Jozo Dujmovic and published by John Wiley & Sons. This book was released on 2018-10-16 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel approach to decision engineering, with a verified framework for modeling human reasoning Soft Computing Evaluation Logic provides an in-depth examination of evaluation decision problems and presents comprehensive guidance toward the use of the Logic Scoring of Preference (LSP) method in modeling complex decision criteria. Fully aligned with current developments in computational intelligence, the discussion covers the design and use of LSP criteria for evaluation and comparison in diverse areas, such as search engines, medical conditions, real estate, space management, habitat mitigation projects in ecology, and land use and residential development suitability maps, with versatile transfer to other similar decision-modeling contexts. Human decision making is rife with fuzziness, imprecision, uncertainty, and half-truths—yet humans make evaluation decisions every day. In this book, such decision processes are observed, analyzed, and modeled. The result is graded logic, a soft computing mathematical infrastructure that provides both formal logic and semantic generalizations of classical Boolean logic. Graded logic is used for logic aggregation in the context of evaluation models consistent with observable properties of human reasoning. The LSP method, based on graded logic and logic aggregation, is a vital component of an industrial-strength decision engineering framework. Thus, the book: Provides detailed theoretical background for graded logic Provides a theory of logic aggregators Explains the LSP method for designing complex evaluation criteria and their use Shows techniques for evaluation, comparison, and selection of complex systems, as well as the cost/suitability analysis, optimization, sensitivity analysis, tradeoff analysis, and missingness-tolerant aggregation Includes a survey of available LSP software tools, including ISEE, ANSY and LSP.NT. With quantitative modeling of human reasoning, novel approaches to modeling decision criteria, and a verified decision engineering framework applicable to a broad array of applications, this book is an invaluable resource for graduate students, researchers, and practitioners working within the decision engineering realm.
Download or read book Transactions on Computational Collective Intelligence XXXII written by Ngoc Thanh Nguyen and published by Springer. This book was released on 2018-12-18 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: These transactions publish research in computer-based methods of computational collective intelligence (CCI) and their applications in a wide range of fields such as the semantic web, social networks, and multi-agent systems. TCCI strives to cover new methodological, theoretical and practical aspects of CCI understood as the form of intelligence that emerges from the collaboration and competition of many individuals (artificial and/or natural). The application of multiple computational intelligence technologies, such as fuzzy systems, evolutionary computation, neural systems, consensus theory, etc., aims to support human and other collective intelligence and to create new forms of CCI in natural and/or artificial systems. This thirty-second issue presents 5 selected papers in the field of management, economics and computer science.
- Author : Tiancheng Li
- Publisher : MDPI
- Release : 2021-03-04
- ISBN : 3036501223
- Pages : 266 pages
Intelligent Sensors for Positioning Tracking Monitoring Navigation and Smart Sensing in Smart Cities
Download or read book Intelligent Sensors for Positioning Tracking Monitoring Navigation and Smart Sensing in Smart Cities written by Tiancheng Li and published by MDPI. This book was released on 2021-03-04 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid development of advanced, arguably, intelligent sensors and their massive deployment provide a foundation for new paradigms to combat the challenges that arise in significant tasks such as positioning, tracking, navigation, and smart sensing in various environments. Relevant advances in artificial intelligence (AI) and machine learning (ML) are also finding rapid adoption by industry and fan the fire. Consequently, research on intelligent sensing systems and technologies has attracted considerable attention during the past decade, leading to a variety of effective applications related to intelligent transportation, autonomous vehicles, wearable computing, wireless sensor networks (WSN), and the internet of things (IoT). In particular, the sensors community has a great interest in novel, intelligent information fusion, and data mining methods coupling AI and ML for substantial performance enhancement, especially for the challenging scenarios that make traditional approaches inappropriate. This reprint book has collected 14 excellent papers that represent state-of-the-art achievements in the relevant topics and provides cutting-edge coverage of recent advances in sensor signal and data mining techniques, algorithms, and approaches, particularly applied for positioning, tracking, navigation, and smart sensing.