Download or read book Fundamentals of Physical Design and Query Compilation written by David Toman and published by Springer Nature. This book was released on 2022-06-01 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: Query compilation is the problem of translating user requests formulated over purely conceptual and domain specific ways of understanding data, commonly called logical designs, to efficient executable programs called query plans. Such plans access various concrete data sources through their low-level often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how such capabilities relate to logical design is commonly called a physical design. This book is an introduction to the fundamental methods underlying database technology that solves the problem of query compilation. The methods are presented in terms of first-order logic which serves as the vehicle for specifying physical design, expressing user requests and query plans, and understanding how query plans implement user requests. Table of Contents: Introduction / Logical Design and User Queries / Basic Physical Design and Query Plans / On Practical Physical Design / Query Compilation and Plan Synthesis / Updating Data
Download or read book Skylines and Other Dominance Based Queries written by Apostolos N. Papadopoulos and published by Springer Nature. This book was released on 2022-06-01 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a gentle introduction to dominance-based query processing techniques and their applications. The book aims to present fundamental as well as some advanced issues in the area in a precise, but easy-to-follow, manner. Dominance is an intuitive concept that can be used in many different ways in diverse application domains. The concept of dominance is based on the values of the attributes of each object. An object dominates another object if is better than . This goodness criterion may differ from one user to another. However, all decisions boil down to the minimization or maximization of attribute values. In this book, we will explore algorithms and applications related to dominance-based query processing. The concept of dominance has a long history in finance and multi-criteria optimization. However, the introduction of the concept to the database community in 2001 inspired many researchers to contribute to the area. Therefore, many algorithmic techniques have been proposed for the efficient processing of dominance-based queries, such as skyline queries, -dominant queries, and top- dominating queries, just to name a few.
Download or read book Answering Queries Using Views written by Foto Afrati and published by Springer Nature. This book was released on 2022-11-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of using views to answer queries has been popular for a few decades now, as it cuts across domains such as query optimization, information integration, data warehousing, website design, and, recently, database-as-a-service and data placement in cloud systems. This book assembles foundational work on answering queries using views in a self-contained manner, with an effort to choose material that constitutes the backbone of the research. It presents efficient algorithms and covers the following problems: query containment; rewriting queries using views in various logical languages; equivalent rewritings and maximally contained rewritings; and computing certain answers in the data-integration and data-exchange settings. Query languages that are considered are fragments of SQL, in particular, select-project-join queries, also called conjunctive queries (with or without arithmetic comparisons or negation), and aggregate SQL queries.
Download or read book Foundations of Data Quality Management written by Wenfei Fan and published by Springer Nature. This book was released on 2022-05-31 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data quality is one of the most important problems in data management. A database system typically aims to support the creation, maintenance, and use of large amount of data, focusing on the quantity of data. However, real-life data are often dirty: inconsistent, duplicated, inaccurate, incomplete, or stale. Dirty data in a database routinely generate misleading or biased analytical results and decisions, and lead to loss of revenues, credibility and customers. With this comes the need for data quality management. In contrast to traditional data management tasks, data quality management enables the detection and correction of errors in the data, syntactic or semantic, in order to improve the quality of the data and hence, add value to business processes. While data quality has been a longstanding problem for decades, the prevalent use of the Web has increased the risks, on an unprecedented scale, of creating and propagating dirty data. This monograph gives an overview of fundamental issues underlying central aspects of data quality, namely, data consistency, data deduplication, data accuracy, data currency, and information completeness. We promote a uniform logical framework for dealing with these issues, based on data quality rules. The text is organized into seven chapters, focusing on relational data. Chapter One introduces data quality issues. A conditional dependency theory is developed in Chapter Two, for capturing data inconsistencies. It is followed by practical techniques in Chapter 2b for discovering conditional dependencies, and for detecting inconsistencies and repairing data based on conditional dependencies. Matching dependencies are introduced in Chapter Three, as matching rules for data deduplication. A theory of relative information completeness is studied in Chapter Four, revising the classical Closed World Assumption and the Open World Assumption, to characterize incomplete information in the real world. A data currency model is presented in Chapter Five, to identify the current values of entities in a database and to answer queries with the current values, in the absence of reliable timestamps. Finally, interactions between these data quality issues are explored in Chapter Six. Important theoretical results and practical algorithms are covered, but formal proofs are omitted. The bibliographical notes contain pointers to papers in which the results were presented and proven, as well as references to materials for further reading. This text is intended for a seminar course at the graduate level. It is also to serve as a useful resource for researchers and practitioners who are interested in the study of data quality. The fundamental research on data quality draws on several areas, including mathematical logic, computational complexity and database theory. It has raised as many questions as it has answered, and is a rich source of questions and vitality. Table of Contents: Data Quality: An Overview / Conditional Dependencies / Cleaning Data with Conditional Dependencies / Data Deduplication / Information Completeness / Data Currency / Interactions between Data Quality Issues
Download or read book Heterogeneous Data Management Polystores and Analytics for Healthcare written by Vijay Gadepally and published by Springer. This book was released on 2019-03-21 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed post-conference proceedings of International Workshops: Polystores and other Systems for Heterogeneous Data, Poly 2018, and Data Management and Analytics for Medicine and Healthcare, DMAH 2018, in Rio de Janeiro, Brazil, in August 2018, held in conjunction with the 44th International Conference on Very Large Data Bases, VLDB 2018. The 11 regular papers presented together with 2 invited papers and 1 abstract of a keynote talk were carefully reviewed and selected from 16 initial submissions. The Poly 2018 Workshop focus on growing a larger and more diverse research agenda around data system solutions for heterogeneous data. The DMAH 2018 Workshop aims to foster exchange of information and discussions on innovative data management and analytics technologies.
Download or read book Data Exploration Using Example Based Methods written by Matteo Lissandrini and published by Springer Nature. This book was released on 2022-06-01 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data usually comes in a plethora of formats and dimensions, rendering the exploration and information extraction processes challenging. Thus, being able to perform exploratory analyses in the data with the intent of having an immediate glimpse on some of the data properties is becoming crucial. Exploratory analyses should be simple enough to avoid complicate declarative languages (such as SQL) and mechanisms, and at the same time retain the flexibility and expressiveness of such languages. Recently, we have witnessed a rediscovery of the so-called example-based methods, in which the user, or the analyst, circumvents query languages by using examples as input. An example is a representative of the intended results, or in other words, an item from the result set. Example-based methods exploit inherent characteristics of the data to infer the results that the user has in mind, but may not able to (easily) express. They can be useful in cases where a user is looking for information in an unfamiliar dataset, when the task is particularly challenging like finding duplicate items, or simply when they are exploring the data. In this book, we present an excursus over the main methods for exploratory analysis, with a particular focus on example-based methods. We show how that different data types require different techniques, and present algorithms that are specifically designed for relational, textual, and graph data. The book presents also the challenges and the new frontiers of machine learning in online settings which recently attracted the attention of the database community. The lecture concludes with a vision for further research and applications in this area.
Download or read book Datalog and Logic Databases written by Sergio Greco and published by Springer Nature. This book was released on 2022-05-31 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of logic in databases started in the late 1960s. In the early 1970s Codd formalized databases in terms of the relational calculus and the relational algebra. A major influence on the use of logic in databases was the development of the field of logic programming. Logic provides a convenient formalism for studying classical database problems and has the important property of being declarative, that is, it allows one to express what she wants rather than how to get it. For a long time, relational calculus and algebra were considered the relational database languages. However, there are simple operations, such as computing the transitive closure of a graph, which cannot be expressed with these languages. Datalog is a declarative query language for relational databases based on the logic programming paradigm. One of the peculiarities that distinguishes Datalog from query languages like relational algebra and calculus is recursion, which gives Datalog the capability to express queries like computing a graph transitive closure. Recent years have witnessed a revival of interest in Datalog in a variety of emerging application domains such as data integration, information extraction, networking, program analysis, security, cloud computing, ontology reasoning, and many others. The aim of this book is to present the basics of Datalog, some of its extensions, and recent applications to different domains.
Download or read book Data Profiling written by Ziawasch Abedjan and published by Springer Nature. This book was released on 2022-06-01 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data profiling refers to the activity of collecting data about data, {i.e.}, metadata. Most IT professionals and researchers who work with data have engaged in data profiling, at least informally, to understand and explore an unfamiliar dataset or to determine whether a new dataset is appropriate for a particular task at hand. Data profiling results are also important in a variety of other situations, including query optimization, data integration, and data cleaning. Simple metadata are statistics, such as the number of rows and columns, schema and datatype information, the number of distinct values, statistical value distributions, and the number of null or empty values in each column. More complex types of metadata are statements about multiple columns and their correlation, such as candidate keys, functional dependencies, and other types of dependencies. This book provides a classification of the various types of profilable metadata, discusses popular data profiling tasks, and surveys state-of-the-art profiling algorithms. While most of the book focuses on tasks and algorithms for relational data profiling, we also briefly discuss systems and techniques for profiling non-relational data such as graphs and text. We conclude with a discussion of data profiling challenges and directions for future work in this area.
Download or read book On Uncertain Graphs written by Arijit Khan and published by Springer Nature. This book was released on 2022-05-31 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-scale, highly interconnected networks, which are often modeled as graphs, pervade both our society and the natural world around us. Uncertainty, on the other hand, is inherent in the underlying data due to a variety of reasons, such as noisy measurements, lack of precise information needs, inference and prediction models, or explicit manipulation, e.g., for privacy purposes. Therefore, uncertain, or probabilistic, graphs are increasingly used to represent noisy linked data in many emerging application scenarios, and they have recently become a hot topic in the database and data mining communities. Many classical algorithms such as reachability and shortest path queries become #P-complete and, thus, more expensive over uncertain graphs. Moreover, various complex queries and analytics are also emerging over uncertain networks, such as pattern matching, information diffusion, and influence maximization queries. In this book, we discuss the sources of uncertain graphs and their applications, uncertainty modeling, as well as the complexities and algorithmic advances on uncertain graphs processing in the context of both classical and emerging graph queries and analytics. We emphasize the current challenges and highlight some future research directions.
Download or read book Big Data Integration written by Xin Luna Dong and published by Springer Nature. This book was released on 2022-05-31 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The big data era is upon us: data are being generated, analyzed, and used at an unprecedented scale, and data-driven decision making is sweeping through all aspects of society. Since the value of data explodes when it can be linked and fused with other data, addressing the big data integration (BDI) challenge is critical to realizing the promise of big data. BDI differs from traditional data integration along the dimensions of volume, velocity, variety, and veracity. First, not only can data sources contain a huge volume of data, but also the number of data sources is now in the millions. Second, because of the rate at which newly collected data are made available, many of the data sources are very dynamic, and the number of data sources is also rapidly exploding. Third, data sources are extremely heterogeneous in their structure and content, exhibiting considerable variety even for substantially similar entities. Fourth, the data sources are of widely differing qualities, with significant differences in the coverage, accuracy and timeliness of data provided. This book explores the progress that has been made by the data integration community on the topics of schema alignment, record linkage and data fusion in addressing these novel challenges faced by big data integration. Each of these topics is covered in a systematic way: first starting with a quick tour of the topic in the context of traditional data integration, followed by a detailed, example-driven exposition of recent innovative techniques that have been proposed to address the BDI challenges of volume, velocity, variety, and veracity. Finally, it presents merging topics and opportunities that are specific to BDI, identifying promising directions for the data integration community.
Download or read book On Transactional Concurrency Control written by Goetz Graefe and published by Springer Nature. This book was released on 2022-05-31 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a number of chapters on transactional database concurrency control. This volume's entire sequence of chapters can summarized as follows: A two-sentence summary of the volume's entire sequence of chapters is this: traditional locking techniques can be improved in multiple dimensions, notably in lock scopes (sizes), lock modes (increment, decrement, and more), lock durations (late acquisition, early release), and lock acquisition sequence (to avoid deadlocks). Even if some of these improvements can be transferred to optimistic concurrency control, notably a fine granularity of concurrency control with serializable transaction isolation including phantom protection, pessimistic concurrency control is categorically superior to optimistic concurrency control, i.e., independent of application, workload, deployment, hardware, and software implementation.
Download or read book Natural Language Data Management and Interfaces written by Yunyao Li and published by Springer Nature. This book was released on 2022-06-01 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume of natural language text data has been rapidly increasing over the past two decades, due to factors such as the growth of the Web, the low cost associated with publishing, and the progress on the digitization of printed texts. This growth combined with the proliferation of natural language systems for search and retrieving information provides tremendous opportunities for studying some of the areas where database systems and natural language processing systems overlap. This book explores two interrelated and important areas of overlap: (1) managing natural language data and (2) developing natural language interfaces to databases. It presents relevant concepts and research questions, state-of-the-art methods, related systems, and research opportunities and challenges covering both areas. Relevant topics discussed on natural language data management include data models, data sources, queries, storage and indexing, and transforming natural language text. Under natural language interfaces, it presents the anatomy of these interfaces to databases, the challenges related to query understanding and query translation, and relevant aspects of user interactions. Each of the challenges is covered in a systematic way: first starting with a quick overview of the topics, followed by a comprehensive view of recent techniques that have been proposed to address the challenge along with illustrative examples. It also reviews some notable systems in details in terms of how they address different challenges and their contributions. Finally, it discusses open challenges and opportunities for natural language management and interfaces. The goal of this book is to provide an introduction to the methods, problems, and solutions that are used in managing natural language data and building natural language interfaces to databases. It serves as a starting point for readers who are interested in pursuing additional work on these exciting topics in both academic and industrial environments.
Download or read book Human Interaction with Graphs written by Sourav S. Bhowmick and published by Springer Nature. This book was released on 2022-06-01 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interacting with graphs using queries has emerged as an important research problem for real-world applications that center on large graph data. Given the syntactic complexity of graph query languages (e.g., SPARQL, Cypher), visual graph query interfaces make it easy for non-programmers to query such graph data repositories. In this book, we present recent developments in the emerging area of visual graph querying paradigm that bridges traditional graph querying with human computer interaction (HCI). Specifically, we focus on techniques that emphasize deep integration between the visual graph query interface and the underlying graph query engine. We discuss various strategies and guidance for constructing graph queries visually, interleaving processing of graph queries and visual actions, visual exploration of graph query results, and automated performance study of visual graph querying frameworks. In addition, this book highlights open problems and new research directions. In summary, in this book, we review and summarize the research thus far into the integration of HCI and graph querying to facilitate user-friendly interaction with graph-structured data, giving researchers a snapshot of the current state of the art in this topic, and future research directions.
Download or read book Community Search over Big Graphs written by Xin Huang and published by Springer Nature. This book was released on 2022-05-31 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Communities serve as basic structural building blocks for understanding the organization of many real-world networks, including social, biological, collaboration, and communication networks. Recently, community search over graphs has attracted significantly increasing attention, from small, simple, and static graphs to big, evolving, attributed, and location-based graphs. In this book, we first review the basic concepts of networks, communities, and various kinds of dense subgraph models. We then survey the state of the art in community search techniques on various kinds of networks across different application areas. Specifically, we discuss cohesive community search, attributed community search, social circle discovery, and geo-social group search. We highlight the challenges posed by different community search problems. We present their motivations, principles, methodologies, algorithms, and applications, and provide a comprehensive comparison of the existing techniques. This book finally concludes by listing publicly available real-world datasets and useful tools for facilitating further research, and by offering further readings and future directions of research in this important and growing area.
Download or read book Cloud Based RDF Data Management written by Zoi Kaoudi and published by Springer Nature. This book was released on 2022-05-31 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: Resource Description Framework (or RDF, in short) is set to deliver many of the original semi-structured data promises: flexible structure, optional schema, and rich, flexible Universal Resource Identifiers as a basis for information sharing. Moreover, RDF is uniquely positioned to benefit from the efforts of scientific communities studying databases, knowledge representation, and Web technologies. As a consequence, the RDF data model is used in a variety of applications today for integrating knowledge and information: in open Web or government data via the Linked Open Data initiative, in scientific domains such as bioinformatics, and more recently in search engines and personal assistants of enterprises in the form of knowledge graphs. Managing such large volumes of RDF data is challenging due to the sheer size, heterogeneity, and complexity brought by RDF reasoning. To tackle the size challenge, distributed architectures are required. Cloud computing is an emerging paradigm massively adopted in many applications requiring distributed architectures for the scalability, fault tolerance, and elasticity features it provides. At the same time, interest in massively parallel processing has been renewed by the MapReduce model and many follow-up works, which aim at simplifying the deployment of massively parallel data management tasks in a cloud environment. In this book, we study the state-of-the-art RDF data management in cloud environments and parallel/distributed architectures that were not necessarily intended for the cloud, but can easily be deployed therein. After providing a comprehensive background on RDF and cloud technologies, we explore four aspects that are vital in an RDF data management system: data storage, query processing, query optimization, and reasoning. We conclude the book with a discussion on open problems and future directions.
Download or read book Spatial Data Management written by Nikos Mamoulis and published by Springer Nature. This book was released on 2022-06-01 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial database management deals with the storage, indexing, and querying of data with spatial features, such as location and geometric extent. Many applications require the efficient management of spatial data, including Geographic Information Systems, Computer Aided Design, and Location Based Services. The goal of this book is to provide the reader with an overview of spatial data management technology, with an emphasis on indexing and search techniques. It first introduces spatial data models and queries and discusses the main issues of extending a database system to support spatial data. It presents indexing approaches for spatial data, with a focus on the R-tree. Query evaluation and optimization techniques for the most popular spatial query types (selections, nearest neighbor search, and spatial joins) are portrayed for data in Euclidean spaces and spatial networks. The book concludes by demonstrating the ample application of spatial data management technology on a wide range of related application domains: management of spatio-temporal data and high-dimensional feature vectors, multi-criteria ranking, data mining and OLAP, privacy-preserving data publishing, and spatial keyword search. Table of Contents: Introduction / Spatial Data / Indexing / Spatial Query Evaluation / Spatial Networks / Applications of Spatial Data Management Technology
Download or read book Business Processes written by Tova Milo and published by Springer Nature. This book was released on 2022-06-01 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: While classic data management focuses on the data itself, research on Business Processes also considers the context in which this data is generated and manipulated, namely the processes, users, and goals that this data serves. This provides the analysts a better perspective of the organizational needs centered around the data. As such, this research is of fundamental importance. Much of the success of database systems in the last decade is due to the beauty and elegance of the relational model and its declarative query languages, combined with a rich spectrum of underlying evaluation and optimization techniques, and efficient implementations. Much like the case for traditional database research, elegant modeling and rich underlying technology are likely to be highly beneficiary for the Business Process owners and their users; both can benefit from easy formulation and analysis of the processes. While there have been many important advances in this research in recent years, there is still much to be desired: specifically, there have been many works that focus on the processes behavior (flow), and many that focus on its data, but only very few works have dealt with both the state-of-the-art in a database approach to Business Process modeling and analysis, the progress towards a holistic flow-and-data framework for these tasks, and highlight the current gaps and research directions. Table of Contents: Introduction / Modeling / Querying Business Processes / Other Issues / Conclusion