Download or read book Foundations of Galois Theory written by M.M. Postnikov and published by Elsevier. This book was released on 2014-07-10 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Galois Theory is an introduction to group theory, field theory, and the basic concepts of abstract algebra. The text is divided into two parts. Part I presents the elements of Galois Theory, in which chapters are devoted to the presentation of the elements of field theory, facts from the theory of groups, and the applications of Galois Theory. Part II focuses on the development of general Galois Theory and its use in the solution of equations by radicals. Equations that are solvable by radicals; the construction of equations solvable by radicals; and the unsolvability by radicals of the general equation of degree n ? 5 are discussed as well. Mathematicians, physicists, researchers, and students of mathematics will find this book highly useful.
Download or read book Fundamentals of Group Theory written by Steven Roman and published by Springer Science & Business Media. This book was released on 2011-10-26 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Group Theory provides a comprehensive account of the basic theory of groups. Both classic and unique topics in the field are covered, such as an historical look at how Galois viewed groups, a discussion of commutator and Sylow subgroups, and a presentation of Birkhoff’s theorem. Written in a clear and accessible style, the work presents a solid introduction for students wishing to learn more about this widely applicable subject area. This book will be suitable for graduate courses in group theory and abstract algebra, and will also have appeal to advanced undergraduates. In addition it will serve as a valuable resource for those pursuing independent study. Group Theory is a timely and fundamental addition to literature in the study of groups.
Download or read book Topics in Galois Theory written by Jean-Pierre Serre and published by CRC Press. This book was released on 2016-04-19 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi
Download or read book Introduction to Abstract Algebra written by Benjamin Fine and published by JHU Press. This book was released on 2014-07-01 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new approach to abstract algebra that eases student anxieties by building on fundamentals. Introduction to Abstract Algebra presents a breakthrough approach to teaching one of math's most intimidating concepts. Avoiding the pitfalls common in the standard textbooks, Benjamin Fine, Anthony M. Gaglione, and Gerhard Rosenberger set a pace that allows beginner-level students to follow the progression from familiar topics such as rings, numbers, and groups to more difficult concepts. Classroom tested and revised until students achieved consistent, positive results, this textbook is designed to keep students focused as they learn complex topics. Fine, Gaglione, and Rosenberger's clear explanations prevent students from getting lost as they move deeper and deeper into areas such as abelian groups, fields, and Galois theory. This textbook will help bring about the day when abstract algebra no longer creates intense anxiety but instead challenges students to fully grasp the meaning and power of the approach. Topics covered include: • Rings • Integral domains • The fundamental theorem of arithmetic • Fields • Groups • Lagrange's theorem • Isomorphism theorems for groups • Fundamental theorem of finite abelian groups • The simplicity of An for n5 • Sylow theorems • The Jordan-Hölder theorem • Ring isomorphism theorems • Euclidean domains • Principal ideal domains • The fundamental theorem of algebra • Vector spaces • Algebras • Field extensions: algebraic and transcendental • The fundamental theorem of Galois theory • The insolvability of the quintic
Download or read book Galois Theory written by Emil Artin and published by . This book was released on 2020-02 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author Emil Artin is known as one of the greatest mathematicians of the 20th century. He is regarded as a man who gave a modern outlook to Galois theory. Original lectures by the master. This emended edition is with completely new typesetting and corrections. The free PDF file available on the publisher's website www.bowwowpress.org
Download or read book Fundamental Concepts of Abstract Algebra written by Gertrude Ehrlich and published by Courier Corporation. This book was released on 2013-05-13 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate text presents extensive coverage of set theory, groups, rings, modules, vector spaces, and fields. It offers numerous examples, definitions, theorems, proofs, and practice exercises. 1991 edition.
Download or read book Homotopy Type Theory Univalent Foundations of Mathematics written by and published by Univalent Foundations. This book was released on with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Exploratory Galois Theory written by John Swallow and published by Cambridge University Press. This book was released on 2004-10-11 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining a concrete perspective with an exploration-based approach, Exploratory Galois Theory develops Galois theory at an entirely undergraduate level. The text grounds the presentation in the concept of algebraic numbers with complex approximations and assumes of its readers only a first course in abstract algebra. For readers with Maple or Mathematica, the text introduces tools for hands-on experimentation with finite extensions of the rational numbers, enabling a familiarity never before available to students of the subject. The text is appropriate for traditional lecture courses, for seminars, or for self-paced independent study by undergraduates and graduate students.
Download or read book The Fundamental Theorem of Algebra written by Benjamin Fine and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.
Download or read book Fundamentals of Advanced Mathematics V2 written by Henri Bourles and published by Elsevier. This book was released on 2018-02-03 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volumes of this series of books, of which this is the second, put forward the mathematical elements that make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. Whereas the first volume focused on the formal conditions for systems of linear equations (in particular of linear differential equations) to have solutions, this book presents the approaches to finding solutions to polynomial equations and to systems of linear differential equations with varying coefficients. Fundamentals of Advanced Mathematics, Volume 2: Field Extensions, Topology and Topological Vector Spaces, Functional Spaces, and Sheaves begins with the classical Galois theory and the theory of transcendental field extensions. Next, the differential side of these theories is treated, including the differential Galois theory (Picard-Vessiot theory of systems of linear differential equations with time-varying coefficients) and differentially transcendental field extensions. The treatment of analysis includes topology (using both filters and nets), topological vector spaces (using the notion of disked space, which simplifies the theory of duality), and the radon measure (assuming that the usual theory of measure and integration is known). In addition, the theory of sheaves is developed with application to the theory of distributions and the theory of hyperfunctions (assuming that the usual theory of functions of the complex variable is known). This volume is the prerequisite to the study of linear systems with time-varying coefficients from the point-of-view of algebraic analysis and the algebraic theory of nonlinear systems. - Present Galois Theory, transcendental field extensions, and Picard - Includes sections on Vessiot theory, differentially transcendental field extensions, topology, topological vector spaces, Radon measure, differential calculus in Banach spaces, sheaves, distributions, hyperfunctions, algebraic analysis, and local analysis of systems of linear differential equations
Download or read book A Book of Abstract Algebra written by Charles C Pinter and published by Courier Corporation. This book was released on 2010-01-14 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Download or read book Basic Category Theory written by Tom Leinster and published by Cambridge University Press. This book was released on 2014-07-24 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: A short introduction ideal for students learning category theory for the first time.
Download or read book Algebra with Galois Theory written by Emil Artin and published by American Mathematical Soc.. This book was released on 2007 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Algebra with Galois Theory' is based on lectures by Emil Artin. The book is an ideal textbook for instructors and a supplementary or primary textbook for students.
Download or read book An Introduction to Algebraic Topology written by Joseph J. Rotman and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.
Download or read book Fundamentals of Advanced Mathematics 1 written by Henri Bourles and published by Elsevier. This book was released on 2017-07-10 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This precis, comprised of three volumes, of which this book is the first, exposes the mathematical elements which make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. This first volume focuses primarily on algebraic questions: categories and functors, groups, rings, modules and algebra. Notions are introduced in a general framework and then studied in the context of commutative and homological algebra; their application in algebraic topology and geometry is therefore developed. These notions play an essential role in algebraic analysis (analytico-algebraic systems theory of ordinary or partial linear differential equations). The book concludes with a study of modules over the main types of rings, the rational canonical form of matrices, the (commutative) theory of elemental divisors and their application in systems of linear differential equations with constant coefficients. - Part of the New Mathematical Methods, Systems, and Applications series - Presents the notions, results, and proofs necessary to understand and master the various topics - Provides a unified notation, making the task easier for the reader. - Includes several summaries of mathematics for engineers
Download or read book Instructor s Manual to Accompany Fundamentals of Abstract Algebra written by D. S. Malik and published by . This book was released on 1997 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lectures on Finite Fields and Galois Rings written by Zhe-Xian Wan and published by World Scientific. This book was released on 2003 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for graduate and upper level undergraduate students in mathematics, computer science, communication engineering and other fields. The explicit construction of finite fields and the computation in finite fields are emphasised. In particular, the construction of irreducible polynomials and the normal basis of finite fields are included. The essentials of Galois rings are also presented. This invaluable book has been written in a friendly style, so that lecturers can easily use it as a text and students can use it for self-study. A great number of exercises have been incorporated.