Download or read book Fundamentals of Acoustical Oceanography written by Herman Medwin and published by Academic Press. This book was released on 1997-11-05 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: The developments in the field of ocean acoustics over recent years make this book an important reference for specialists in acoustics, oceanography, marine biology, and related fields. Fundamentals of Acoustical Oceanography also encourages a new generation of scientists, engineers, and entrepreneurs to apply the modern methods of acoustical physics to probe the unknown sea. The book is an authoritative, modern text with examples and exercises. It contains techniques to solve the direct problems, solutions of inverse problems, and an extensive bibliography from the earliest use of sound in the sea to present references.Written by internationally recognized scientists, the book provides background to measure ocean parameters and processes, find life and objects in the sea, communicate underwater, and survey the boundaries of the sea. Fundamentals of Acoustical Oceanography explains principles of underwater sound propagation, and describes how both actively probing sonars and passively listening hydrophones can reveal what the eye cannot see over vast ranges of the turbid ocean. This book demonstrates how to use acoustical remote sensing, variations in sound transmission, in situ acoustical measurements, and computer and laboratory models to identify the physical and biological parameters and processes in the sea.* Offers an integrated, modern approach to passive and active underwater acoustics* Contains many examples of laboratory scale models of ocean-acoustic environments, as well as descriptions of experiments at sea* Covers remote sensing of marine life and the seafloor* Includes signal processing of ocean sounds, physical and biological noises at sea, and inversions* resents sound sources, receivers, and calibration* Explains high intensities; explosive waves, parametric sources, cavitation, shock waves, and streaming* Covers microbubbles from breaking waves, rainfall, dispersion, and attenuation* Describes sound propagation along ray paths and caustics* Presents sound transmissions and normal mode methods in ocean waveguides
Download or read book Fundamentals of Ocean Acoustics written by L. Brekhovskikh and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The continents of our planet have already been exploited to a great extent. Therefore man is turning his sight to the vast spaciousness of the ocean whose resources - mineral, biological, energetic, and others - are just beginning to be used. The ocean is being intensively studied. Our notions about the dynam ics of ocean waters and their role in forming the Earth's climate as well as about the structure of the ocean bottom have substantially changed during the last two decades. An outstanding part in this accelerated exploration of the ocean is played by ocean acoustics. Only sound waves can propagate in water over large distances. Practically all kinds of telemetry, communication, location, and re mote sensing of water masses and the ocean bottom use sound waves. Propa gating over thousands of kilometers in the ocean, they bring information on earthquakes, eruptions of volcanoes, and distant storms. Projects using acoustical tomography systems for exploration of the ocean are presently be ing developed. Each of these systems will allow us to determine the three-di mensional structure of water masses in regions as large as millions of square kilometers.
Download or read book Sounds in the Sea written by Herman Medwin and published by Cambridge University Press. This book was released on 2005-07-21 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description
Download or read book Computational Ocean Acoustics written by Finn B. Jensen and published by Springer Science & Business Media. This book was released on 2011-06-10 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: Senior level/graduate level text/reference presenting state-of-the- art numerical techniques to solve the wave equation in heterogeneous fluid-solid media. Numerical models have become standard research tools in acoustic laboratories, and thus computational acoustics is becoming an increasingly important branch of ocean acoustic science. The first edition of this successful book, written by the recognized leaders of the field, was the first to present a comprehensive and modern introduction to computational ocean acoustics accessible to students. This revision, with 100 additional pages, completely updates the material in the first edition and includes new models based on current research. It includes problems and solutions in every chapter, making the book more useful in teaching (the first edition had a separate solutions manual). The book is intended for graduate and advanced undergraduate students of acoustics, geology and geophysics, applied mathematics, ocean engineering or as a reference in computational methods courses, as well as professionals in these fields, particularly those working in government (especially Navy) and industry labs engaged in the development or use of propagating models.
Download or read book Fundamentals of Shallow Water Acoustics written by Boris Katsnelson and published by Springer Science & Business Media. This book was released on 2012-02-22 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the worlds oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume the authors, all of whom have extensive at-sea experience in US and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.
Download or read book Principles of Marine Bioacoustics written by Whitlow W. L. Au and published by Springer Science & Business Media. This book was released on 2009-07-30 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Humans have always been fascinated by marine life, from extremely small diatoms to the largest mammal that inhabits our planet, the blue whale. However, studying marine life in the ocean is an extremely difficult propo- tion because an ocean environment is not only vast but also opaque to most instruments and can be a hostile environment in which to perform expe- ments and research. The use of acoustics is one way to effectively study animal life in the ocean. Acoustic energy propagates in water more efficiently than almost any form of energy and can be utilized by animals for a variety of purposes and also by scientists interested in studying their behavior and natural history. However, underwater acoustics have traditionally been in the domain of physicists, engineers and mathematicians. Studying the natural history of animals is in the domain of biologists and physiologists. Und- standing behavior of animals has traditionally involved psychologists and zoologists. In short, marine bioacoustics is and will continue to be a diverse discipline involving investigators from a variety of backgrounds, with very different knowledge and skill sets. The inherent inter-disciplinary nature of marine bioacoustics presents a large challenge in writing a single text that would be meaningful to various investigators and students interested in this field. Yet we have embarked on this challenge to produce a volume that would be helpful to not only beginning investigators but to seasoned researchers.
Download or read book An Introduction to Underwater Acoustics written by Xavier Lurton and published by Springer Science & Business Media. This book was released on 2002 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented in a clear and concise way as an introductory text and practical handbook, the book provides the basic physical phenomena governing underwater acoustical waves, propagation, reflection, target backscattering and noise. It covers the general features of sonar systems, transducers and arrays, signal processing and performance evaluation. It provides an overview of today's applications, presenting the working principles of the various systems. From the reviews: "Presented in a clear and concise way as an introductory text and practical handbook, the book provides the basic physical phenomena governing underwater acoustical waves, propagation, reflection, target backscattering and noise. ⦠It provides an overview of todayâs applications, presenting the working principles of the various systems." (Oceanis, Vol. 27 (3-4), 2003) "This book is a general survey of Underwater Acoustics, intended to make the subject âas easily accessible as possible, with a clear emphasis on applications.â In this the author has succeeded, with a wide variety of subjects presented with minimal derivation ⦠. There is an emphasis on technology and on intuitive physical explanation ⦠." (Darrell R. Jackson, Journal of the Acoustic Society of America, Vol. 115 (2), February, 2004) "This is an exciting new scientific publication. It is timely and welcome ⦠. Furthermore, it is up to date and readable. It is well researched, excellently published and ranks with earlier books in this discipline ⦠. Many persons in the marine science field including acousticians, hydrographers, oceanographers, fisheries scientists, engineers, educators, students ⦠and equipment manufacturers will benefit greatly by reading all or part of this text. The author is to be congratulated on his fine contribution ⦠." (Stephen B. MacPhee, International Hydrographic Review, Vol. 4 (2), 2003)
Download or read book Acoustics A Textbook for Engineers and Physicists written by Jerry H. Ginsberg and published by Springer. This book was released on 2017-10-04 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate and advanced undergraduate textbook systematically addresses all core topics in physical and engineering acoustics. Written by a well-known textbook author with 39 years of experience performing research, teaching, and mentoring in the field, it is specially designed to provide maximum support for learning. Presentation begins from a foundation that does not assume prior study of acoustics and advanced mathematics. Derivations are rigorous, thoroughly explained, and often innovative. Important concepts are discussed for their physical implications and their implementation. Many of the examples are mini case studies that address systems students will find to be interesting and motivating for continued study. Step-by-step explanations accompany example solutions. They address both the significance of the example and the strategy for approaching it. Wherever techniques arise that might be unfamiliar to the reader, they are explained in full. Volume I contains 186 homework exercises, accompanied by a detailed solutions manual for instructors. This text, along with its companion, Volume II: Applications, provides a knowledge base that will enable the reader to begin undertaking research and to work in core areas of acoustics.
Download or read book Springer Handbook of Acoustics written by Thomas Rossing and published by Springer Science & Business Media. This book was released on 2007-06-21 with total page 1179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.
Download or read book Fundamentals and Applications of Ultrasonic Waves written by J. David N. Cheeke and published by CRC Press. This book was released on 2017-12-19 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written at an intermediate level in a way that is easy to understand, Fundamentals and Applications of Ultrasonic Waves, Second Edition provides an up-to-date exposition of ultrasonics and some of its main applications. Designed specifically for newcomers to the field, this fully updated second edition emphasizes underlying physical concepts over mathematics. The first half covers the fundamentals of ultrasonic waves for isotropic media. Starting with bulk liquid and solid media, discussion extends to surface and plate effects, at which point the author introduces new modes such as Rayleigh and Lamb waves. This focus on only isotropic media simplifies the usually complex mathematics involved, enabling a clearer understanding of the underlying physics to avoid the complicated tensorial description characteristic of crystalline media. The second part of the book addresses a broad spectrum of industrial and research applications, including quartz crystal resonators, surface acoustic wave devices, MEMS and microacoustics, and acoustic sensors. It also provides a broad discussion on the use of ultrasonics for non-destructive evaluation. The author concentrates on the developing area of microacoustics, including exciting new work on the use of probe microscopy techniques in nanotechnology. Focusing on the physics of acoustic waves, as well as their propagation, technology, and applications, this book addresses viscoelasticity, as well as new concepts in acoustic microscopy. It updates coverage of ultrasonics in nature and developments in sonoluminescence, and it also compares new technologies, including use of atomic force acoustic microscopy and lasers. Highlighting both direct and indirect applications for readers working in neighboring disciplines, the author presents particularly important sections on the use of microacoustics and acoustic nanoprobes in next-generation devices and instruments.
Download or read book Acoustical Oceanography written by Clarence S. Clay and published by . This book was released on 1977-07-12 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Cochlear Implants written by Graeme Clark and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: The cochlear implant is a device that bypasses a nonfunctional inner ear and stimulates the auditory nerve directly. Written by the "father" of the multi-electrode implant, this comprehensive text and reference gives an account of the principles underlying cochlear implants and their clinical application. For the clinician, the book will provide guidance in the treatment of patients; for the engineer and researcher it will provide the background for further research; and for the student, it will provide a through understanding of the subject.
Download or read book Fundamentals of Ocean Renewable Energy written by Simon P. Neill and published by Academic Press. This book was released on 2018-06-20 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea presents the basic concepts of mechanics and introduces the various technical aspects of ocean renewable energy. Contents follow a logical sequence, starting with hydrodynamics and then separately examining each conversion technology, with special focus on tidal energy, offshore wind and wave energy, as well as current and ocean thermal energy conversion (OTEC). The authors explore key topics for resource characterization and optimization, such as monitoring and measurement methods and ocean modeling. They also discuss the sustainability, planning, integration and distribution challenges for the implementation of these technologies, including co-location with other systems. Finally, case studies of ocean energy sites and devices allow for a better understanding of how ocean energy conversion works in real-world settings. This book is an invaluable resource for students at graduate and senior undergraduate level engineering (ocean, mechanical, and civil) and oceanography with prior knowledge of fluid mechanics and mechanics of materials. - Presents the fundamental physics and theory behind ocean energy systems, covering both oceanographic and engineering aspects of ocean energy - Explores the most widely adopted conversion technologies, including tidal, wave, offshore wind, ocean thermal and currents
Download or read book Underwater Acoustic Modeling and Simulation written by Paul C. Etter and published by CRC Press. This book was released on 2017-12-19 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Underwater Acoustic Modeling and Simulation, Fourth Edition continues to provide the most authoritative overview of currently available propagation, noise, reverberation, and sonar-performance models. This fourth edition of a bestseller discusses the fundamental processes involved in simulating the performance of underwater acoustic systems and emphasizes the importance of applying the proper modeling resources to simulate the behavior of sound in virtual ocean environments. New to the Fourth Edition Extensive new material that addresses recent advances in inverse techniques and marine-mammal protection Problem sets in each chapter Updated and expanded inventories of available models Designed for readers with an understanding of underwater acoustics but who are unfamiliar with the various aspects of modeling, the book includes sufficient mathematical derivations to demonstrate model formulations and provides guidelines for selecting and using the models. Examples of each type of model illustrate model formulations, model assumptions, and algorithm efficiency. Simulation case studies are also included to demonstrate practical applications. Providing a thorough source of information on modeling resources, this book examines the translation of our physical understanding of sound in the sea into mathematical models that simulate acoustic propagation, noise, and reverberation in the ocean. The text shows how these models are used to predict and diagnose the performance of complex sonar systems operating in the undersea environment.
Download or read book Principles of Ocean Physics written by John R. Apel and published by Elsevier. This book was released on 2013-10-22 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, significant advances in both the theoretical and observational sides of physical oceanography have allowed the ocean's physical behavior to be described more quantitatively. This book discusses the physical mechanisms and processes of the sea, and will be valuable not only to oceanographers but also physicists, graduate students, and scientists working in dynamics or optics of the marine environment.
Download or read book Nonlinear Underwater Acoustics written by Boris Konstantinovich Novikov and published by Acoustical Society of America. This book was released on 1987 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Parametric sound sources and receivers; Methods of calculation of nonlinear interactions in sound beams; Nonlinear interaction of plane waves; Method of the parabolic equation and basic results of linear diffraction theory; Parametric sound radiators with nondiffracting beams of pump waves; Calculation of different regimes of operation of the parametric radiator; Parametric receiving arrays; Operation of parametric radiators at high intensities of the pump waves; Thermal opto acoustic arrays; Construction features of parametric underwater devices; Experimental investigations and testing of parametric arrays; Parametric apparatus and the regions of their use, and Use of nomograms for calculation of the characteristics of a parametric radiator.
Download or read book Understanding Acoustics written by Steven L. Garrett and published by Springer. This book was released on 2017-02-24 with total page 913 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chapters on vibration and elastic waves that provide important results and highlight modern applications while introducing analytical techniques that are revisited in the study of waves in fluids covered in Part II. A unified approach to waves in fluids (i.e., liquids and gases) is based on a mastery of the hydrodynamic equations. Part III demonstrates extensions of this view to nonlinear acoustics. Engaging and practical, this book is a must-read for graduate students in acoustics and vibration as well as active researchers interested in a novel approach to the material.