EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamentals of Advanced Mathematics V3

Download or read book Fundamentals of Advanced Mathematics V3 written by Henri Bourles and published by Elsevier. This book was released on 2019-10-11 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Advanced Mathematics, Volume Three, begins with the study of differential and analytic infinite-dimensional manifolds, then progresses into fibered bundles, in particular, tangent and cotangent bundles. In addition, subjects covered include the tensor calculus on manifolds, differential and integral calculus on manifolds (general Stokes formula, integral curves and manifolds), an analysis on Lie groups, the Haar measure, the convolution of functions and distributions, and the harmonic analysis over a Lie group. Finally, the theory of connections is (linear connections, principal connections, and Cartan connections) covered, as is the calculus of variations in Lagrangian and Hamiltonian formulations. This volume is the prerequisite to the analytic and geometric study of nonlinear systems. - Includes sections on differential and analytic manifolds, vector bundles, tensors, Lie derivatives, applications to algebraic topology, and more - Presents an ideal prerequisite resource on the analytic and geometric study of nonlinear systems - Provides theory as well as practical information

Book Fundamentals of Advanced Mathematics 1

Download or read book Fundamentals of Advanced Mathematics 1 written by Henri Bourles and published by Elsevier. This book was released on 2017-07-10 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This precis, comprised of three volumes, of which this book is the first, exposes the mathematical elements which make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. This first volume focuses primarily on algebraic questions: categories and functors, groups, rings, modules and algebra. Notions are introduced in a general framework and then studied in the context of commutative and homological algebra; their application in algebraic topology and geometry is therefore developed. These notions play an essential role in algebraic analysis (analytico-algebraic systems theory of ordinary or partial linear differential equations). The book concludes with a study of modules over the main types of rings, the rational canonical form of matrices, the (commutative) theory of elemental divisors and their application in systems of linear differential equations with constant coefficients. - Part of the New Mathematical Methods, Systems, and Applications series - Presents the notions, results, and proofs necessary to understand and master the various topics - Provides a unified notation, making the task easier for the reader. - Includes several summaries of mathematics for engineers

Book Fundamentals of Advanced Mathematics V2

Download or read book Fundamentals of Advanced Mathematics V2 written by Henri Bourles and published by Elsevier. This book was released on 2018-02-03 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volumes of this series of books, of which this is the second, put forward the mathematical elements that make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. Whereas the first volume focused on the formal conditions for systems of linear equations (in particular of linear differential equations) to have solutions, this book presents the approaches to finding solutions to polynomial equations and to systems of linear differential equations with varying coefficients. Fundamentals of Advanced Mathematics, Volume 2: Field Extensions, Topology and Topological Vector Spaces, Functional Spaces, and Sheaves begins with the classical Galois theory and the theory of transcendental field extensions. Next, the differential side of these theories is treated, including the differential Galois theory (Picard-Vessiot theory of systems of linear differential equations with time-varying coefficients) and differentially transcendental field extensions. The treatment of analysis includes topology (using both filters and nets), topological vector spaces (using the notion of disked space, which simplifies the theory of duality), and the radon measure (assuming that the usual theory of measure and integration is known). In addition, the theory of sheaves is developed with application to the theory of distributions and the theory of hyperfunctions (assuming that the usual theory of functions of the complex variable is known). This volume is the prerequisite to the study of linear systems with time-varying coefficients from the point-of-view of algebraic analysis and the algebraic theory of nonlinear systems. - Present Galois Theory, transcendental field extensions, and Picard - Includes sections on Vessiot theory, differentially transcendental field extensions, topology, topological vector spaces, Radon measure, differential calculus in Banach spaces, sheaves, distributions, hyperfunctions, algebraic analysis, and local analysis of systems of linear differential equations

Book Proofs and Fundamentals

    Book Details:
  • Author : Ethan D. Bloch
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-01
  • ISBN : 1461221307
  • Pages : 434 pages

Download or read book Proofs and Fundamentals written by Ethan D. Bloch and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.

Book Advanced Problems in Mathematics

Download or read book Advanced Problems in Mathematics written by Stephen Siklos and published by . This book was released on 2019-10-16 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.

Book Advanced Calculus  Fundamentals of Mathematics

Download or read book Advanced Calculus Fundamentals of Mathematics written by Carlos Polanco and published by Bentham Science Publishers. This book was released on 2019-07-31 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vector calculus is an essential mathematical tool for performing mathematical analysis of physical and natural phenomena. It is employed in advanced applications in the field of engineering and computer simulations. This textbook covers the fundamental requirements of vector calculus in curricula for college students in mathematics and engineering programs. Chapters start from the basics of vector algebra, real valued functions, different forms of integrals, geometric algebra and the various theorems relevant to vector calculus and differential forms. Readers will find a concise and clear study of vector calculus, along with several examples, exercises, and a case study in each chapter. The solutions to the exercises are also included at the end of the book. This is an ideal book for students with a basic background in mathematics who wish to learn about advanced calculus as part of their college curriculum and equip themselves with the knowledge to apply theoretical concepts in practical situations.

Book Advanced Calculus  Revised Edition

Download or read book Advanced Calculus Revised Edition written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Book Advanced Mathematics for Engineering Students

Download or read book Advanced Mathematics for Engineering Students written by Brent J. Lewis and published by Butterworth-Heinemann. This book was released on 2021-05-20 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Mathematics for Engineering Students: The Essential Toolbox provides a concise treatment for applied mathematics. Derived from two semester advanced mathematics courses at the author's university, the book delivers the mathematical foundation needed in an engineering program of study. Other treatments typically provide a thorough but somewhat complicated presentation where students do not appreciate the application. This book focuses on the development of tools to solve most types of mathematical problems that arise in engineering – a "toolbox for the engineer. It provides an important foundation but goes one step further and demonstrates the practical use of new technology for applied analysis with commercial software packages (e.g., algebraic, numerical and statistical). - Delivers a focused and concise treatment on the underlying theory and direct application of mathematical methods so that the reader has a collection of important mathematical tools that are easily understood and ready for application as a practicing engineer - The book material has been derived from class-tested courses presented over many years in applied mathematics for engineering students (all problem sets and exam questions given for the course(s) are included along with a solution manual) - Provides fundamental theory for applied mathematics while also introducing the application of commercial software packages as modern tools for engineering application, including: EXCEL (statistical analysis); MAPLE (symbolic and numeric computing environment); and COMSOL (finite element solver for ordinary and partial differential equations)

Book Advanced Mathematics

    Book Details:
  • Author : Stanley J. Farlow
  • Publisher : John Wiley & Sons
  • Release : 2019-10-02
  • ISBN : 1119563534
  • Pages : 573 pages

Download or read book Advanced Mathematics written by Stanley J. Farlow and published by John Wiley & Sons. This book was released on 2019-10-02 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.

Book Galois Groups and Fundamental Groups

Download or read book Galois Groups and Fundamental Groups written by Tamás Szamuely and published by Cambridge University Press. This book was released on 2009-07-16 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming little technical background, the author presents the strong analogies between these two concepts starting at an elementary level.

Book An Introduction to Operator Algebras

Download or read book An Introduction to Operator Algebras written by Kehe Zhu and published by CRC Press. This book was released on 1993-05-27 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Operator Algebras is a concise text/reference that focuses on the fundamental results in operator algebras. Results discussed include Gelfand's representation of commutative C*-algebras, the GNS construction, the spectral theorem, polar decomposition, von Neumann's double commutant theorem, Kaplansky's density theorem, the (continuous, Borel, and L8) functional calculus for normal operators, and type decomposition for von Neumann algebras. Exercises are provided after each chapter.

Book Visual Group Theory

    Book Details:
  • Author : Nathan Carter
  • Publisher : American Mathematical Soc.
  • Release : 2021-06-08
  • ISBN : 1470464330
  • Pages : 295 pages

Download or read book Visual Group Theory written by Nathan Carter and published by American Mathematical Soc.. This book was released on 2021-06-08 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.

Book Basic Mathematics

Download or read book Basic Mathematics written by Serge Lang and published by . This book was released on 1988-01 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of Scientific Mathematics

Download or read book Fundamentals of Scientific Mathematics written by George E. Owen and published by Courier Corporation. This book was released on 2003-01-01 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rewarding undergraduate text, derived from an experimental program in teaching mathematics at the secondary-school level. This text provides a good introduction to geometry and matrices, vector algebra, analytic geometry, functions, and differential and integral calculus. "...solid modern mathematical content..." — American Scientist. Over 200 figures. 1964 edition.

Book Real Analysis

    Book Details:
  • Author : N. L. Carothers
  • Publisher : Cambridge University Press
  • Release : 2000-08-15
  • ISBN : 9780521497565
  • Pages : 420 pages

Download or read book Real Analysis written by N. L. Carothers and published by Cambridge University Press. This book was released on 2000-08-15 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: A text for a first graduate course in real analysis for students in pure and applied mathematics, statistics, education, engineering, and economics.

Book Pure Mathematics for Advanced Level

Download or read book Pure Mathematics for Advanced Level written by B. D. Bunday and published by Butterworth-Heinemann. This book was released on 2014-05-20 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pure Mathematics for Advanced Level, Second Edition is written to meet the needs of the student studying for the General Certificate of Education at Advanced Level. The text is organized into 22 chapters. Chapters 1-5 cover topics in algebra such as operations with real numbers, the binomial theorem, and the quadratic function and the quadratic equation. The principles, methods and techniques in calculus, trigonometry, and co-ordinate geometry are provided as well. Two new chapters have been added: Numerical Methods and Vectors. Mathematics students will find this book extremely useful.

Book A Transition to Advanced Mathematics

Download or read book A Transition to Advanced Mathematics written by William Johnston and published by Oxford University Press. This book was released on 2009-07-27 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Transition to Advanced Mathematics: A Survey Course promotes the goals of a "bridge'' course in mathematics, helping to lead students from courses in the calculus sequence (and other courses where they solve problems that involve mathematical calculations) to theoretical upper-level mathematics courses (where they will have to prove theorems and grapple with mathematical abstractions). The text simultaneously promotes the goals of a ``survey'' course, describing the intriguing questions and insights fundamental to many diverse areas of mathematics, including Logic, Abstract Algebra, Number Theory, Real Analysis, Statistics, Graph Theory, and Complex Analysis. The main objective is "to bring about a deep change in the mathematical character of students -- how they think and their fundamental perspectives on the world of mathematics." This text promotes three major mathematical traits in a meaningful, transformative way: to develop an ability to communicate with precise language, to use mathematically sound reasoning, and to ask probing questions about mathematics. In short, we hope that working through A Transition to Advanced Mathematics encourages students to become mathematicians in the fullest sense of the word. A Transition to Advanced Mathematics has a number of distinctive features that enable this transformational experience. Embedded Questions and Reading Questions illustrate and explain fundamental concepts, allowing students to test their understanding of ideas independent of the exercise sets. The text has extensive, diverse Exercises Sets; with an average of 70 exercises at the end of section, as well as almost 3,000 distinct exercises. In addition, every chapter includes a section that explores an application of the theoretical ideas being studied. We have also interwoven embedded reflections on the history, culture, and philosophy of mathematics throughout the text.