Download or read book Fundamental Theories and Their Applications of the Calculus of Variations written by Dazhong Lao and published by Springer Nature. This book was released on 2020-09-02 with total page 1006 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the calculus of variations, including fundamental theories and applications. This textbook is intended for graduate and higher-level college and university students, introducing them to the basic concepts and calculation methods used in the calculus of variations. It covers the preliminaries, variational problems with fixed boundaries, sufficient conditions of extrema of functionals, problems with undetermined boundaries, variational problems of conditional extrema, variational problems in parametric forms, variational principles, direct methods for variational problems, variational principles in mechanics and their applications, and variational problems of functionals with vector, tensor and Hamiltonian operators. Many of the contributions are based on the authors’ research, addressing topics such as the extension of the connotation of the Hilbert adjoint operator, definitions of the other three kinds of adjoint operators, the extremum function theorem of the complete functional, unified Euler equations in variational methods, variational theories of functionals with vectors, modulus of vectors, arbitrary order tensors, Hamiltonian operators and Hamiltonian operator strings, reconciling the Euler equations and the natural boundary conditions, and the application range of variational methods. The book is also a valuable reference resource for teachers as well as science and technology professionals.
Download or read book An Introduction to the Calculus of Variations written by L.A. Pars and published by Courier Corporation. This book was released on 2013-12-10 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clear, rigorous introductory treatment covers applications to geometry, dynamics, and physics. It focuses upon problems with one independent variable, connecting abstract theory with its use in concrete problems. 1962 edition.
Download or read book Differential Geometry Calculus of Variations and Their Applications written by George M. Rassias and published by CRC Press. This book was released on 1985-10-01 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a series of papers on some of the longstanding research problems of geometry, calculus of variations, and their applications. It is suitable for advanced graduate students, teachers, research mathematicians, and other professionals in mathematics.
Download or read book Calculus of Variations and Optimal Control Theory written by Daniel Liberzon and published by Princeton University Press. This book was released on 2012 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Download or read book Calculus of Variations written by I. M. Gelfand and published by Courier Corporation. This book was released on 2012-04-26 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fresh, lively text serves as a modern introduction to the subject, with applications to the mechanics of systems with a finite number of degrees of freedom. Ideal for math and physics students.
Download or read book Advanced Calculus Revised Edition written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Download or read book Introduction to the Calculus of Variations written by Bernard Dacorogna and published by Imperial College Press. This book was released on 2009 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist ? mathematicians, physicists, engineers, students or researchers ? in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.
Download or read book Variational Methods in Nonlinear Elasticity written by Pablo Pedregal and published by SIAM. This book was released on 2000-01-01 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the main vector variational methods developed to solve nonlinear elasticity problems. Presenting a general framework with a tight focus, the author provides a comprehensive exposition of a technically difficult, yet rapidly developing area of modern applied mathematics. The book includes the classical existence theory as well as a brief incursion into problems where nonexistence is fundamental. It also provides self-contained, concise accounts of quasi convexity, polyconvexity, and rank-one convexity, which are used in nonlinear elasticity.
Download or read book Convex Analysis and Variational Problems written by Ivar Ekeland and published by SIAM. This book was released on 1999-12-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.
Download or read book A History of the Calculus of Variations from the 17th through the 19th Century written by H. H. Goldstine and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: The calculus of variations is a subject whose beginning can be precisely dated. It might be said to begin at the moment that Euler coined the name calculus of variations but this is, of course, not the true moment of inception of the subject. It would not have been unreasonable if I had gone back to the set of isoperimetric problems considered by Greek mathemati cians such as Zenodorus (c. 200 B. C. ) and preserved by Pappus (c. 300 A. D. ). I have not done this since these problems were solved by geometric means. Instead I have arbitrarily chosen to begin with Fermat's elegant principle of least time. He used this principle in 1662 to show how a light ray was refracted at the interface between two optical media of different densities. This analysis of Fermat seems to me especially appropriate as a starting point: He used the methods of the calculus to minimize the time of passage cif a light ray through the two media, and his method was adapted by John Bernoulli to solve the brachystochrone problem. There have been several other histories of the subject, but they are now hopelessly archaic. One by Robert Woodhouse appeared in 1810 and another by Isaac Todhunter in 1861.
Download or read book Variational Analysis written by R. Tyrrell Rockafellar and published by Springer Science & Business Media. This book was released on 2009-06-26 with total page 747 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Download or read book The Calculus of Variations written by Bruce van Brunt and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering, this introduction to the calculus of variations focuses on variational problems involving one independent variable. It also discusses more advanced topics such as the inverse problem, eigenvalue problems, and Noether’s theorem. The text includes numerous examples along with problems to help students consolidate the material.
Download or read book Variational Calculus and Optimal Control written by John L. Troutman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science.
Download or read book Tensors Differential Forms and Variational Principles written by David Lovelock and published by Courier Corporation. This book was released on 2012-04-20 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.
Download or read book Optimal Transport for Applied Mathematicians written by Filippo Santambrogio and published by Birkhäuser. This book was released on 2015-10-17 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.
Download or read book Noether s Theorems written by Gennadi Sardanashvily and published by Springer. This book was released on 2016-03-18 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.
Download or read book Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane PMS 48 written by Kari Astala and published by Princeton University Press. This book was released on 2009-01-18 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.