EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamental Studies on the Effects of Microstructure on Thermal Conductivity in Nano thermoelectric Materials

Download or read book Fundamental Studies on the Effects of Microstructure on Thermal Conductivity in Nano thermoelectric Materials written by Joseph Edward Alaniz and published by . This book was released on 2013 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoelectric materials have gained a considerable amount of attention as a practical power source for a wide range of applications including space missions as well as heat scavenging systems in the automobile industry. Though significant research has been performed investigating improved thermoelectric properties as a result of nano-structuring, most of these studies have been focused on efficiency improvements rather than systematic investigations on the effect of microstructure on properties. Three investigations are presented that use pure Silicon and Silicon-Germanium materials to investigate the effects of grain size, porosity, phase boundaries, and grain size distribution on the thermal conductivity in nano-structured materials. These studies provide a deeper fundamental understanding of the effects of microstructure on the thermal conductivity of these materials. It is shown that by decreasing the grain size of pure Silicon to 76nm it is possible to decrease the thermal conductivity by an order of magnitude. The thermal conductivity is further decreased by 74% when the density of the material is decreased to 86%. A study showing the effects of planetary ball milling and Current Activated Pressure Assisted Densification on the homogeneity and microstructure of heterogeneous Silicon-Germanium alloys are shown, as well as preliminary data showing the effects of heterogeneity on the thermal conductivity of these alloys. Finally, the effects of varying the grain size distribution in pure fully dense Silicon materials is shown along with a rule of mixtures based model for bimodal grain size distribution in pure Silicon. The model is shown to accurately estimate the measured thermal conductivity values within 6%.

Book Oxide Thermoelectric Materials

Download or read book Oxide Thermoelectric Materials written by Yuan-Hua Lin and published by John Wiley & Sons. This book was released on 2019-07-12 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book of its kind?providing comprehensive information on oxide thermoelectrics This timely book explores the latest research results on the physics and materials science of oxide thermoelectrics at all scales. It covers the theory, design and properties of thermoelectric materials as well as fabrication technologies for devices and their applications. Written by three distinguished materials scientists, Oxide Thermoelectric Materials reviews: the fundamentals of electron and phonon transport; modeling of thermoelectric modules and their optimization; synthetic processes, structures, and properties of thermoelectric materials such as Bi2Te3- and skutterudite-based materials and Si-Ge alloys. In addition, the book provides a detailed description of the construction of thermoelectric devices and their applications. -Contains fundamentals and applications of thermoelectric materials and devices, and discusses their near-future perspectives -Introduces new, promising materials and technologies, such as nanostructured materials, perovskites, and composites -Paves the way for increased conversion efficiencies of oxides -Authored by well-known experts in the field of thermoelectrics Oxide Thermoelectric Materials is a well-organized guidebook for graduate students involved in physics, chemistry, or materials science. It is also helpful for researchers who are getting involved in thermoelectric research and development.

Book Organic Thermoelectric Materials

Download or read book Organic Thermoelectric Materials written by Zhiqun Lin and published by Royal Society of Chemistry. This book was released on 2019-10-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarises the significant progress made in organic thermoelectric materials, focusing on effective routes to minimize thermal conductivity and maximize power factor.

Book Nano scale Heat Transfer in Nanostructures

Download or read book Nano scale Heat Transfer in Nanostructures written by Jihong Al-Ghalith and published by Springer. This book was released on 2018-03-06 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book introduces modern atomistic techniques for predicting heat transfer in nanostructures, and discusses the applications of these techniques on three modern topics. The study of heat transport in screw-dislocated nanowires with low thermal conductivity in their bulk form represents the knowledge base needed for engineering thermal transport in advanced thermoelectric and electronic materials, and suggests a new route to lower thermal conductivity that could promote thermoelectricity. The study of high-temperature coating composite materials facilitates the understanding of the role played by composition and structural characterization, which is difficult to approach via experiments. And the understanding of the impact of deformations, such as bending and collapsing on thermal transport along carbon nanotubes, is important as carbon nanotubes, due to their exceptional thermal and mechanical properties, are excellent material candidates in a variety of applications, including thermal interface materials, thermal switches and composite materials.

Book Nanoscale Thermoelectrics

Download or read book Nanoscale Thermoelectrics written by Xiaodong Wang and published by Springer. This book was released on 2016-08-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role by converting waste heat into electricity directly. Nanostructured thermoelectric materials have received much attention recently due to the potential for enhanced properties associated with size effects and quantum confinement. Nanoscale Thermoelectrics describes the theory underlying these phenomena, as well as various thermoelectric materials and nanostructures such as carbon nanotubes, SiGe nanowires, and graphene nanoribbons. Chapters written by leading scientists throughout the world are intended to create a fundamental bridge between thermoelectrics and nanotechnology, and to stimulate readers' interest in developing new types of thermoelectric materials and devices for power generation and other applications. Nanoscale Thermoelectrics is both a comprehensive introduction to the field and a guide to further research, and can be recommended for Physics, Electrical Engineering, and Materials Science departments.

Book Thermoelectric Micro   Nano Generators  Volume 2

Download or read book Thermoelectric Micro Nano Generators Volume 2 written by Hiroyuki Akinaga and published by John Wiley & Sons. This book was released on 2023-12-07 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores a key technology regarding the importance of connections via an Internet of Things network and how this helps us to easily communicate with others and gather information. Namely, what would happen if this suddenly became unavailable due to a shortage of power or electricity? Using thermoelectric generators is a viable solution as they use the heat around us to generate the much-needed electricity for our technological needs. This second volume on the challenges and prospects of thermoelectric generators covers the reliability and durability of thermoelectric materials and devices, the effect of microstructures on the understanding of electronic properties of complex materials, thermoelectric nanowires, the impact of chemical doping or magnetism, thermoelectric generation using the anomalous Nernst effect, phonon engineering, the current state and future prospects of thermoelectric technologies, transition metal silicides, and past, present and future applications of thermoelectrics.

Book Thermoelectric Materials

Download or read book Thermoelectric Materials written by Enrique Macia and published by CRC Press. This book was released on 2015-05-05 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Environmental and economic concerns have significantly spurred the search for novel, high-performance thermoelectric materials for energy conversion in small-scale power generation and refrigeration devices. This quest has been mainly fueled by the introduction of new designs and the synthesis of new materials. In fact, good thermoelectric material

Book CRC Handbook of Thermoelectrics

Download or read book CRC Handbook of Thermoelectrics written by D.M. Rowe and published by CRC Press. This book was released on 2018-12-07 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoelectrics is the science and technology associated with thermoelectric converters, that is, the generation of electrical power by the Seebeck effect and refrigeration by the Peltier effect. Thermoelectric generators are being used in increasing numbers to provide electrical power in medical, military, and deep space applications where combinations of their desirable properties outweigh their relatively high cost and low generating efficiency. In recent years there also has been an increase in the requirement for thermoelectric coolers (Peltier devices) for use in infrared detectors and in optical communications. Information on thermoelectrics is not readily available as it is widely scattered throughout the literature. The Handbook centralizes this information in a convenient format under a single cover. Sixty of the world's foremost authorities on thermoelectrics have contributed to this Handbook. It is comprised of fifty-five chapters, a number of which contain previously unpublished material. The contents are arranged in eight sections: general principles and theoretical considerations, material preparation, measurement of thermoelectric properties, thermoelectric materials, thermoelectric generation, generator applications, thermoelectric refrigeration, and applications of thermoelectric cooling. The CRC Handbook of Thermoelectrics has a broad-based scope. It will interest researchers, technologists, and manufacturers, as well as students and the well-informed, non-specialist reader.

Book Thermoelectric Properties of Some Nanostructured Materials

Download or read book Thermoelectric Properties of Some Nanostructured Materials written by Chanderbhan Chotia and published by Mohammed Abdul Sattar. This book was released on 2023-03-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fossil fuels such as coal, oil or natural gas are consumed as a large part of the world's total energy consumption . Fossil-fuel-powered generators however produce the greenhouse gases such as CO2 or SO2 that cause environmental pollution and contribute to global warming. These problems challenge researchers to look for alternatives and sustainable energies. Thermoelectric (TE) materials are promising alternatives in this direction because they work without emissions of harmful gases or heat and without chemical waste. TE materials work noiselessly because they do not consist of any mechanical parts and convert thermal energy directly into electricity and vice versa. The conversion of thermal energy into electricity is based on the Seebeck effect and this phenomenon is also known as the thermoelectric effect or thermoelectric power, which is why the TE devices are more often referred to as thermoelectric generators (TEGs). Thermoelectric properties of some nanostructured materials refer to the study of the ability of materials at the nanoscale to convert temperature differences into electrical energy and vice versa. This phenomenon is known as the Seebeck effect, which is based on the generation of a potential difference when a temperature gradient is applied across a material. Nanostructured materials such as nanoparticles, thin films, superlattices, quantum dots, nanowires, and carbon nanotubes have unique properties that make them attractive for thermoelectric applications. These materials exhibit quantum confinement effects, which can enhance the thermoelectric performance by modifying the electronic and phononic properties of the material. The thermoelectric properties of nanostructured materials are characterized by the Seebeck coefficient, electrical conductivity, and thermal conductivity. The figure of merit (ZT) is a measure of the efficiency of thermoelectric materials, and it is determined by the ratio of the Seebeck coefficient, electrical conductivity, and thermal conductivity. Researchers use various techniques such as thermal annealing, band structure engineering, density functional theory, high-throughput screening, molecular dynamics simulations, electron microscopy, and X-ray diffraction to study the thermoelectric properties of nanostructured materials. Thermoelectric generators based on nanostructured materials have potential applications in energy harvesting from waste heat, solar thermoelectric power generation, and cooling devices. Hence, the study of thermoelectric properties of some nanostructured materials has significant implications for the development of sustainable energy technologies.

Book Introduction to Thermoelectricity

Download or read book Introduction to Thermoelectricity written by H. Julian Goldsmid and published by Springer Science & Business Media. This book was released on 2009-10-03 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Thermoelectricity is the latest work by Professor Julian Goldsmid drawing on his 55 years experience in the field. The theory of the thermoelectric and related phenomena is presented in sufficient detail to enable researchers to understand their observations and develop improved thermoelectric materials. The methods for the selection of materials and their improvement are discussed. Thermoelectric materials for use in refrigeration and electrical generation are reviewed. Experimental techniques for the measurement of properties and for the production of thermoelements are described. Special emphasis is placed on nanotechnology which promises to yield great improvements in the efficiency of thermoelectric devices. Chapters are also devoted to transverse thermoelectric effects and thermionic energy conversion, both techniques offering the promise of important applications in the future.

Book Advances in Thermoelectricity  Foundational Issues  Materials and Nanotechnology

Download or read book Advances in Thermoelectricity Foundational Issues Materials and Nanotechnology written by D. Narducci and published by . This book was released on 2021-06-22 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of thermoelectricity has continued to develop rapidly in recent years and remains one of the most exciting areas of research for a materials physicist. The need for sustainable energy has added a technological momentum to the challenge of devising materials with exceptional properties such as low thermal conductivity, high electrical conductivity and a large Seebeck coefficient, and has triggered a global, interdisciplinary effort. More recently, research on thermoelectric materials has promoted and motivated a major research endeavor to clarify the factors affecting thermal conductivity in nanostructures as part of a more general effort to apply nanotechnology to enhance the performance of thermoelectric materials for use in thermoelectric generators and coolers.This book contains the lectures presented as Course 207 of the International School of Physics Enrico Fermi, Advances in Thermoelectricity: Foundational Issues, Materials, and Nanotechnology, held in Varenna, Italy from 15 - 20 July 2019. This comprehensive course aimed to provide students with a modern vision of the physics of thermoelectric phenomena, starting from the thermodynamics of thermoelectricity and from the physics of transport processes and demonstrating how material structure and nanostructure, together with defects, have been used to tailor the physical properties of advanced thermoelectrics. Special attention was also given to areas of current research - from spin-caloritronics to charge transport in polymers - and to a selected number of applications for heat recovery.Encompassing the full complexity of modern thermoelectricity and covering the most cogent themes relevant to current research, the book will be of interest to all those working in the field.

Book Thermoelectric Materials and Devices

Download or read book Thermoelectric Materials and Devices written by Iris Nandhakumar and published by Royal Society of Chemistry. This book was released on 2017 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authoritative account of recent developments in thermoelectric materials and devices for power energy harvesting applications, ideal for researchers and industrialists in materials science.

Book Thermoelectric Materials

Download or read book Thermoelectric Materials written by Ken Kurosaki and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-06-08 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: How can you design good thermoelectric materials? This book covers thermoelectric material concepts and synthesis techniques in particular focusing methods for enhancing current materials designs to achieve the greatest thermoelectric efficiencies. This book is ideal for researchers and advanced students of materials science, physics, and energy.

Book Inorganic Thermoelectric Materials

Download or read book Inorganic Thermoelectric Materials written by Anthony V Powell and published by Royal Society of Chemistry. This book was released on 2021-11-24 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoelectric devices convert a heat flux directly into electrical power. They afford opportunities to achieve efficiency savings in a variety of applications, through the conversion of otherwise waste heat into useful electrical energy. Operated in reverse mode, they provide effective thermal management in areas ranging from cooling of electronic components to battery conditioning in electric vehicles. Implementation of thermoelectric technology requires materials with improved performance and stability, containing readily-available and inexpensive elements. A range of thermoelectric materials for use in different temperature regimes has emerged. Knowledge of the complex relationship between composition, structure and physical properties is central to understanding the performance of these advanced materials. This book provides both an introduction to the field of thermoelectrics and a survey of the state-of-the-art. Chapters review the important new families of advanced materials that have emerged and taken the field beyond traditional thermoelectric materials such as Bi2Te3, PbTe and SiGe. The emphasis is on the relationship between chemical composition, structure over a range of length scales and the physical properties that underlie performance. Edited by a leader in the field, and with contributions from global experts, Inorganic Thermoelectric Materials serves as an introduction to thermoelectric materials and is accessible to advanced undergraduates and postgraduates, as well as experienced researchers

Book Thermoelectric Micro   Nano Generators  Volume 1

Download or read book Thermoelectric Micro Nano Generators Volume 1 written by Hiroyuki Akinaga and published by John Wiley & Sons. This book was released on 2023-12-12 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores a key technology regarding the importance of connections via an Internet of Things network and how this helps us to easily communicate with others and gather information. Namely, what would happen if this suddenly became unavailable due to a shortage of power or electricity? Using thermoelectric generators is a viable solution as they use the heat around us to generate the much-needed electricity for our technological needs. This first volume explores the computational and data-driven development of these thermoelectric generators, as well as the use of various abundant materials such as copper and silver chalcogenides and nanocarbons. It also offers reviews on universal property enhancement principles and the case of strongly correlated oxides, and goes on to explore the metrology of the thermal properties of thermoelectric generators, detailing methods of how to measure the absolute Seebeck coefficient using the Thomson effect and the thermal diffusivity of thin films using the ultrafast laser flash method.