EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamental Solutions in Elastodynamics

Download or read book Fundamental Solutions in Elastodynamics written by Eduardo Kausel and published by Cambridge University Press. This book was released on 2006-02-13 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is a compilation of fundamental solutions (or Green's functions) for classical or canonical problems in elastodynamics presented with a common format and notation. These formulas describe the displacements and stresses elicited by dynamic sources in solid elastic media like full spaces, half-spaces, strata and plates in both two and three dimensions, using the three major coordinate systems (Cartesian, cylindrical and spherical), and also for transient and harmonic motions. Such formulas are useful for numerical methods and practical application to problems of wave propagation in elasticity, soil dynamics, earthquake engineering, mechanical vibration, or geophysics. These formulas were heretofore only found scattered throughout the literature. The solutions are tabulated without proof, but giving reference to appropriate modern papers and books containing full derivations. Most formulas in the book have been programmed and tested within the MATLAB environment. The program listings are available for free download on the book's website.

Book Fundamental Solutions of Linear Partial Differential Operators

Download or read book Fundamental Solutions of Linear Partial Differential Operators written by Norbert Ortner and published by Springer. This book was released on 2015-08-05 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides the theoretical foundations needed for the construction of fundamental solutions and fundamental matrices of (systems of) linear partial differential equations. Many illustrative examples also show techniques for finding such solutions in terms of integrals. Particular attention is given to developing the fundamentals of distribution theory, accompanied by calculations of fundamental solutions. The main part of the book deals with existence theorems and uniqueness criteria, the method of parameter integration, the investigation of quasihyperbolic systems by means of Fourier and Laplace transforms, and the representation of fundamental solutions of homogeneous elliptic operators with the help of Abelian integrals. In addition to rigorous distributional derivations and verifications of fundamental solutions, the book also shows how to construct fundamental solutions (matrices) of many physically relevant operators (systems), in elasticity, thermoelasticity, hexagonal/cubic elastodynamics, for Maxwell’s system and others. The book mainly addresses researchers and lecturers who work with partial differential equations. However, it also offers a valuable resource for students with a solid background in vector calculus, complex analysis and functional analysis.

Book Fundamental Solutions for Differential Operators and Applications

Download or read book Fundamental Solutions for Differential Operators and Applications written by Prem Kythe and published by Springer Science & Business Media. This book was released on 1996-07-30 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained and systematic development of an aspect of analysis which deals with the theory of fundamental solutions for differential operators, and their applications to boundary value problems of mathematical physics, applied mathematics, and engineering, with the related computational aspects.

Book Advanced Structural Dynamics

Download or read book Advanced Structural Dynamics written by Eduardo Kausel and published by Cambridge University Press. This book was released on 2017-08-07 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from three decades' worth of lecture notes which the author used to teach at the Massachusetts Institute of Technology, this unique textbook presents a comprehensive treatment of structural dynamics and mechanical vibration. The chapters in this book are self-contained so that instructors can choose to be selective about which topics they teach. Written with an application-based focus, the text covers topics such as earthquake engineering, soil dynamics, and relevant numerical methods techniques that use MATLAB. Advanced topics such as the Hilbert transform, gyroscope forces, and spatially periodic structures are also treated extensively. Concise enough for an introductory course yet rigorous enough for an advanced or graduate-level course, this textbook is also a useful reference manual - even after the final exam - for professional and practicing engineers.

Book The Scaled Boundary Finite Element Method

Download or read book The Scaled Boundary Finite Element Method written by John P. Wolf and published by John Wiley & Sons. This book was released on 2003-03-14 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.

Book Integral Transform Techniques for Green s Function

Download or read book Integral Transform Techniques for Green s Function written by Kazumi Watanabe and published by Springer. This book was released on 2015-04-20 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green’s functions for beams, plates and acoustic media are also shown, along with their mathematical derivations. The Cagniard-de Hoop method for double inversion is described in detail and 2D and 3D elastodynamic problems are treated in full. This new edition explains in detail how to introduce the branch cut for the multi-valued square root function. Further, an exact closed form Green’s function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral.

Book Automated Solution of Differential Equations by the Finite Element Method

Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

Book Time dependent and Vibration Problems

Download or read book Time dependent and Vibration Problems written by Carlos A. Brebbia and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This series has been developed in response to the interest shown in boundary ele ments by scientists and engineers. Whilst Volume 1 was dedicated to basic principles and applications, this book is concerned with the state of the art in the solution of time-dependent problems. Since papers have recently been published on this im portant topic it is time to produce a work of a more permanent nature. The volume begins with a chapter on the Fundamentals of Boundary Integral Equation Methods in Elastodynamics. After reviewing the basic equations of elasto dynamics, the wave equation and dynamic reciprocal theorems are stated and the direct and indirect boundary element formulations are presented. Eigenvalue problems are discussed together with the case of the Fourier transformations. Several applications illustrate the effectiveness of the technique for engineering. Chapter 2 examines some of the various boundary integral equation formulations available for elastodynamic problems. In particular the displacement-traction for mulation is compared with the displacement-potential case. The special character istics of the elastodynamics fundamental solutions are discussed in detail and a criti cal comparison with the elastostatics case is presented. While the chapter is not meant to be a complete review of the work in the field, the original presentation of the problem and the suggestions for further work make an important contribu tion to the development of the method.

Book Linear Theory

    Book Details:
  • Author : A. Cemal Eringen
  • Publisher : Academic Press
  • Release : 2013-10-22
  • ISBN : 1483276716
  • Pages : 676 pages

Download or read book Linear Theory written by A. Cemal Eringen and published by Academic Press. This book was released on 2013-10-22 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elastodynamics, Volume II: Linear Theory is a continuation of Volume I and discusses the dynamical theory of linear isotropic elasticity. The volume deals with the fundamental theorems regarding elastodynamics and the different mathematical methods of solution and their employment in one, two, and three dimensions. The text outlines the fundamentals of linear elastodynamics and explains basic equations, displacement formulation, stress formulation, and the uniqueness theorem of elastodynamics. The book also investigates elastodynamic problems involving one-space dimension in governing boundaries, equations, and initial conditions. The book then compares two-dimensional problems as being subject to more precise mathematical analysis compared to three-dimensional situations by using scalar wave equations. The text then analyzes elastodynamic problems in three space dimensions when the solution depends on the condition of separability of the vector wave equation and the satisfaction of the boundary conditions. The diffraction of elastic waves is also described using two approaches: the integral equation method or the Eigen function technique. The book can prove valuable to researchers and practitioners whose work involves advanced statistics, general physics, and thermodynamics.

Book Boundary Elements in Dynamics

Download or read book Boundary Elements in Dynamics written by J. Dominguez and published by WIT Press. This book was released on 1993 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reference for those who need to acquire detailed knowledge of the formulation, implementation, and practical applications of BEM in dynamics. The author presents research on BEM in dynamics of continua. The main emphasis is on the development of the different boundary element formulations.

Book Fundamentals of Seismic Wave Propagation

Download or read book Fundamentals of Seismic Wave Propagation written by Chris Chapman and published by Cambridge University Press. This book was released on 2004-07-29 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.

Book Fundamentals of Finite Element Analysis

Download or read book Fundamentals of Finite Element Analysis written by Ioannis Koutromanos and published by John Wiley & Sons. This book was released on 2018-02-12 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.

Book Methods of the Classical Theory of Elastodynamics

Download or read book Methods of the Classical Theory of Elastodynamics written by Vladimir B. Poruchikov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Methods of the Classical Theory of Elastodynamics" deals not only with classical methods as developed in the past decades, but presents also very recent approaches. Applications and solutions to specific problems serve to illustrate the theoretical presentation. Keywords: Smirnov-Sobolev method with further developments; integral transforms; Wiener-Hopf technique; mixed boundary-value problems; time-dependent boundaries; solutions for unisotropic media (Willis method); 3-d dynamical problems for mixed boundary conditions.

Book Boundary Integral Equations

Download or read book Boundary Integral Equations written by George C. Hsiao and published by Springer Nature. This book was released on 2021-03-26 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.

Book Fundamentals of the Mechanics of Solids

Download or read book Fundamentals of the Mechanics of Solids written by Paolo Maria Mariano and published by Birkhäuser. This book was released on 2015-11-30 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This distinctive textbook aims to introduce readers to the basic structures of the mechanics of deformable bodies, with a special emphasis on the description of the elastic behavior of simple materials and structures composed by elastic beams. The authors take a deductive rather than inductive approach and start from a few first, foundational principles. A wide selection of exercises, many with hints and solutions, are provided throughout and organized in a way that will allow readers to form a link between abstract mathematical concepts and real-world applications. The text begins with the definition of bodies and deformations, keeping the kinematics of rigid bodies as a special case; the authors also distinguish between material and spatial metrics, defining each one in the pertinent space. Subsequent chapters cover observers and classes of possible changes; forces, torques, and related balances, which are derived from the invariance under classical changes in observers of the power of the external actions over a body, rather than postulated a priori; constitutive structures; variational principles in linear elasticity; the de Saint-Venant problem; yield criteria and a discussion of their role in the representation of material behavior; and an overview of some bifurcation phenomena, focusing on the Euler rod. An appendix on tensor algebra and tensor calculus is included for readers who need a brief refresher on these topics. Fundamentals of the Mechanics of Solids is primarily intended for graduate and advanced undergraduate students in various fields of engineering and applied mathematics. Prerequisites include basic courses in calculus, mathematical analysis, and classical mechanics.

Book Numerical Methods for Laplace Transform Inversion

Download or read book Numerical Methods for Laplace Transform Inversion written by Alan M. Cohen and published by Springer Science & Business Media. This book was released on 2007-06-16 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives background material on the theory of Laplace transforms, together with a fairly comprehensive list of methods that are available at the current time. Computer programs are included for those methods that perform consistently well on a wide range of Laplace transforms. Operational methods have been used for over a century to solve problems such as ordinary and partial differential equations.