EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamental Physics and Application of Plasma Actuators for High speed Flows

Download or read book Fundamental Physics and Application of Plasma Actuators for High speed Flows written by Eli S. Lazar and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, a detailed investigation is given discussing three plasma-based flow control methods. These methods included plasma generated by laser energy, microwaves, and electric arc. The plasma generated by laser energy was also applied to a sonic transverse jet in a supersonic cross flow. Lastly, the particle image velocimetry diagnostic was considered and a technique developed to evaluate measurement uncertainty and using experimental velocity data to solve for density from the continuity equation. In the laser-spark system, the effect of ambient pressure in the range of 0.1 to 1.0 atm and wavelength (266 nm and 532 nm) on the size, temperature, electron number density, and fraction of laser energy absorbed in a laser-induced plasma in air has been conducted. The plasma was generated by using optics to focus the laser energy. The focused laser pulse resulted in the induced optical breakdown of air, creating a plasma to perturb the flow field. As pressure or wavelength are reduced, the size of the plasma, its electron number density, and the fraction of incident laser energy that is absorbed are all found to decrease significantly. For the plasma generated by microwaves, the feasibility of using the system for flow control was demonstrated at pressures ranging from 0.05 atm to 1 atm and for pulsing frequencies between 400 Hz to 10 kHz. The setup was based on a quarter-wave coaxial resonator being operated with a microwave frequency of 2.45 GHz. Analysis of reflected power measurements suggested that the microwave energy could be best coupled into the resonator by using a small inductive loop, where the geometry can be experimentally optimized. The plasma was first characterized by recording images of the emission and taking temporal emission waveform profiles. Tests were conducted in quiescent air and analyzed with schlieren photography to determine the effectiveness of a plasma pulse to produce an instantaneous flow perturbation. Examination of phase averaged schlieren images revealed that a blast was produced by the emission and could be used to alter a flow field. The emission was also thermally characterized through emission spectroscopy measurements where the vibrational and rotational temperatures of the plasma were determined. The last system considered was a localized arc filament plasma actuator, or LAFPA-type device. The system creates electric arcs by generating electric fields in the range of 20 kV/cm between two pin-type electrodes. The potential of the actuator to influence surrounding quiescent flow was investigated using emission imaging, schlieren imaging, current and voltage probes, particle image velocimetry (PIV), and emission spectroscopy. The schlieren imaging revealed a potential to cause blast 0́−Mach0́+ waves and a synthetic jet with controllable directionality dependent on cavity orientation. The electric measurements revealed that, in order to increase the power discharged by the plasma, the electrode separation will only aid mildly and that an optimum plasma current exists (between 300-400 mA for the tested parameter space). The PIV data were acquired for various actuation frequencies and showed a trend between discharge frequency and maximum induced jet velocity. Finally, the emission spectroscopy data were acquired for four different cases: two electrode separations and two plasma currents. For each of the four conditions tested, the spectrum fit very well to a thermal distribution for early times in the emission. However, at later times in the emission, the spectrum no longer matched that of the second positive system under optically thick conditions for any combination of rotational and vibrational temperatures. Using the plasma generated by laser energy, an experimental investigation of flow control on a sonic underexpanded jet injected normally into a Mach 2.45 crossflow is reported. The jet exit geometry was circular and was operated at a jet-to-crossflow momentum flux ratio of 1.7. The unperturbed flow field was analyzed with schlieren imaging, PIV velocity data, surface oil flow visualizations, and pressure sensitive paint measurements. As a means of excitation to the flow field, the plasma energy was focused in the center of the jet exit at three different vertical locations. The perturbed resulting flow field was analyzed with schlieren photography and particle image velocimetry. Analysis of phase averaged schlieren images suggested that the resulting blast wave from the laser pulse disrupted the structure of the barrel shock and Mach disk. The two-component velocity field data revealed that the excitation pulse also caused a perturbation to the jet shear layer and induced the formation of vortices that convect downstream. Finally, additional techniques were developed for the PIV diagnostics. First, while PIV is an established experimental technique for determining a velocity field, quantifying the uncertainty related with this method remains a challenging task. To this end, four sources of uncertainty are assessed: equipment, particle lag, sampling size, and processing algorithm. An example uncertainty analysis is conducted for a transverse sonic jet injected into a supersonic crossflow. However, the analysis is not specific to the example flow field and may be generally applied to any mean velocity field. Secondly, using the velocity data from PIV, a technique was developed to solve for density from the continuity equation over the entire flow field. The technique is validated using data from CFD simulations and demonstrated for experimental data for two flow fields.

Book Flow Control Techniques and Applications

Download or read book Flow Control Techniques and Applications written by Jinjun Wang and published by Cambridge University Press. This book was released on 2018-12-13 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the theory, applications and control mechanisms of flow control techniques.

Book Optimisation of Dielectric Barrier Discharge Plasma Actuators and Their Application to Fluid Dynamics

Download or read book Optimisation of Dielectric Barrier Discharge Plasma Actuators and Their Application to Fluid Dynamics written by Rasool Erfani and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The standard dielectric barrier discharge (DBD) plasma actuator, in which an asymmetric arrangement of electrodes leads to momentum coupling into the surrounding air, has already demonstrated its capability for flow control. The effect of some parameters such as dielectric thickness, dielectric temperature, voltage amplitude, driving frequency, different configurations and arrangements on actuator performance are examined. The new configuration of DBD which uses multiple encapsulated electrodes (MEE) has been shown to produce a superior and more desirable performance over the standard actuator design. As the number of encapsulated electrodes increases and other variables such as the driving frequency and voltage amplitude are considered, finding the optimum actuator configuration for increasing the induced velocity becomes a challenge. The surrogate modelling optimisation provides a cheap and yet efficient method for systematically investigating the effect of different parameters on the performance of the plasma actuator. The effect of the optimum actuator configuration on the aerodynamic performance of an aerofoil under leading edge separation and wake interaction conditions is examined. The plasma actuator is placed at the leadingedge of a symmetric NACA 0015 aerofoil which corresponds to the location of the leading edge slat. The aerofoil is operated at a chord Reynolds number of 0.2×10 6. Surface pressure measurements along with the mean velocity profile of the wake using pitot measurements are used to determine the lift and drag coefficients, respectively. Particle image velocimetry (PIV) is also utilised to visualise and quantify the induced flow field. In comparison with reported literature on the standard DBD configuration, the MEE setup employed here is shown to provide a better means of flow control for the control of aerofoil separation. The characteristicsof a DBD plasma actuator when exposed to an unsteady flow generated by a shock tube is also investigated. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualise the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shocktube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma.

Book Encyclopedia of Plasma Technology   Two Volume Set

Download or read book Encyclopedia of Plasma Technology Two Volume Set written by J. Leon Shohet and published by CRC Press. This book was released on 2016-12-12 with total page 1654 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technical plasmas have a wide range of industrial applications. The Encyclopedia of Plasma Technology covers all aspects of plasma technology from the fundamentals to a range of applications across a large number of industries and disciplines. Topics covered include nanotechnology, solar cell technology, biomedical and clinical applications, electronic materials, sustainability, and clean technologies. The book bridges materials science, industrial chemistry, physics, and engineering, making it a must have for researchers in industry and academia, as well as those working on application-oriented plasma technologies. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]

Book Development of Localized Arc Filament RF Plasma Actuators for High Speed and High Reynolds Number Flow Control

Download or read book Development of Localized Arc Filament RF Plasma Actuators for High Speed and High Reynolds Number Flow Control written by and published by . This book was released on 2010 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently developed Localized Arc Filament Plasma Actuators (LAFPAs) have shown tremendous control authority in high-speed and high Reynolds number flow for mixing enhancement and noise mitigation. Previously, these actuators were powered by a high voltage pulsed DC plasma generator with low energy coupling efficiency of 5-10%. In the present work, a new custom-designed 8-channel pulsed radio frequency (RF) plasma generator has been developed to power up to 8 plasma actuators operated over a wide range of forcing frequencies (up to 50 kHz) and duty cycles (1-50%), and at high energy coupling efficiency (up to 80-85%). This reduces input electrical power requirements by approximately an order of magnitude, down to 12 W per actuator operating at 10% duty cycle. The new pulsed RF plasma generator is scalable to a system with a large number of channels. Performance of pulsed RF plasma actuators used for flow control was studied in a Mach 0.9 circular jet with a Reynolds number of about 623,000 and compared with that of pulsed DC actuators. Eight actuators were distributed uniformly on the perimeter of a 2.54 cm diameter circular nozzle extension. Both types of actuators coupled approximately the same amount of power to the flow, but with drastically different electrical inputs to the power supplies. Particle image velocimetry measurements showed that jet centerline Mach number decay produced by DC and RF actuators operating at the same forcing frequencies and duty cycles is very similar. At a forcing Strouhal number near 0.3, close to the jet column instability frequency, well-organized periodic structures, with similar patterns and dimensions, were generated in the jets forced by both DC and RF actuators. Farfield acoustic measurements demonstrated similar trends in the Overall Sound Pressure Level (OASPL) change produced by both types of actuators, resulting in OASPL reduction up to 1.2- 1.5 dB in both cases.

Book Computational Electromagnetic Aerodynamics

Download or read book Computational Electromagnetic Aerodynamics written by Joseph J. S. Shang and published by John Wiley & Sons. This book was released on 2016-04-11 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields and fluid flow and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physic kinetics, and plasmadynamics Integrates interlinking computational model and simulation techniques of aerodynamics and electromagnetics Combines classic plasma drift-diffusion theory and electron impact ionization modeling for electromagnetic-aerodynamic interactions Describes models of internal degrees of freedom for vibration relaxation and electron excitations

Book Using Plasmas for High speed Flow Control and Combustion Control

Download or read book Using Plasmas for High speed Flow Control and Combustion Control written by Saurabh Keshav and published by . This book was released on 2008 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Experiments on characterization of Localized Arc Filament Plasma Actuators used for high-speed flow control, as well as experimental studies of chemiluminescence and chemi-ionization for flame emission and combustion control have been discussed. Pulsed DC and pulsed RF actuator discharge power measurements and plasma temperature measurements demonstrated that rapid localized heating, at a rate of 1000 degrees C / 10 us, can be achieved at low time-averaged actuator powers, 10-20 W for 10% duty cycle. Kinetic modeling of a pulsed arc filament demonstrated formation of strong compression waves due to rapid localized heating, which have also been detected in the experiments. The effect of electrons in chemi-ionized supersonic flows of combustion products on flow emission is studied experimentally. For this, a stable ethylene/oxygen/argon flame is sustained in a combustion chamber at a stagnation pressure of P0=1 atm. Electron density in M=3 flow of combustion products has been measured using Thomson discharge. The results show that nearly all electrons can be removed from the flow by applying a moderate transverse electric field. No effect of electron removal on CH and C2 emission from the flow has been detected. Also, electron removal did not affect NO [beta] band and CN violet band emission when nitric oxide was injected into the combustion product flow. Chemi-ionization current measured in the supersonic flows of combustion products has been used for feedback combustion control. The experiments showed that time-resolved chemi-ionization current is in good correlation with the visible emission (CH and C2 bands) in the combustor at unstable combustion conditions, and is nearly proportional to the equivalence ratio at stable combustion conditions. Chemi-ionization current signal from the combustion product flow has been used to control an actuator valve in the fuel delivery line and to maintain the equivalence ratio in the combustor at the desired level.

Book Scalability of Localized Arc Filament Plasma Actuators

Download or read book Scalability of Localized Arc Filament Plasma Actuators written by Clifford A. Brown and published by BiblioGov. This book was released on 2013-07 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: Temporal flow control of a jet has been widely studied in the past to enhance jet mixing or reduce jet noise. Most of this research, however, has been done using small diameter low Reynolds number jets that often have little resemblance to the much larger jets common in real world applications because the flow actuators available lacked either the power or bandwidth to sufficiently impact these larger higher energy jets. The Localized Arc Filament Plasma Actuators (LAFPA), developed at the Ohio State University (OSU), have demonstrated the ability to impact a small high speed jet in experiments conducted at OSU and the power to perturb a larger high Reynolds number jet in experiments conducted at the NASA Glenn Research Center. However, the response measured in the large-scale experiments was significantly reduced for the same number of actuators compared to the jet response found in the small-scale experiments. A computational study has been initiated to simulate the LAFPA system with additional actuators on a large-scale jet to determine the number of actuators required to achieve the same desired response for a given jet diameter. Central to this computational study is a model for the LAFPA that both accurately represents the physics of the actuator and can be implemented into a computational fluid dynamics solver. One possible model, based on pressure waves created by the rapid localized heating that occurs at the actuator, is investigated using simplified axisymmetric simulations. The results of these simulations will be used to determine the validity of the model before more realistic and time consuming three-dimensional simulations are conducted to ultimately determine the scalability of the LAFPA system.

Book Active Control of High Speed Subsonic Cavity Flow Using Plasma Actuators

Download or read book Active Control of High Speed Subsonic Cavity Flow Using Plasma Actuators written by Douglas Alan Mitchell and published by . This book was released on 2007 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: The study and control of cavity flow fields began in the 1950's and has remained an active area of research for the past fifty years. Grazing flow over an open cavity which leads to resonance is a common occurrence generated by the flow-acoustic coupling mechanism. When the natural instabilities in the shear layer phase match with the acoustic waves generated from the impingement of the structures in the shear layer at the trailing edge of the cavity, high amplitude background noise and discrete cavity tones are generated in the form of high amplitude pressure fluctuations. Common examples of this phenomenon are aircraft landing gear openings, aircraft weapons bays, and engine air intakes. Unchecked cavity flow resonance can lead to weapon stores damage and incorrect deployment, reduction in lift, increase in drag, and structural fatigue. Initial research concentrated on using a compression driver as a synthetic jet type actuator to reduce acoustic resonance peaks, to operate the actuator at optimal forcing frequencies using reduced order modeling in order to shrink the peaks without triggering adjacent tones, and to develop logic based controls to damp pressure fluctuations within the system. The compression driver was ultimately limited by its frequency bandwidth and power output. The limited capabilities of the compression driver led to the development of the localized arc filament plasma actuator which is capable of high bandwidth and high amplitude actuation. The focus of this research was on the development of a high speed subsonic cavity flow facility and its control using localized arc filament plasma actuators (LAFPA). A cavity flow facility was designed and fabricated which allowed for the study of both baseline and forced cavity flows. The baseline flow characteristics were studied using flow visualization techniques in the form of particle image velocimetry (PIV) and schlieren photography, dynamic surface pressure measurements, and instantaneous and time-averaged dynamic pressure correlations to gain further understanding in cavity flow physics. Once the flow was sufficiently understood, LAFPAs were then used to force the flow into different modes or non-preferred frequencies in order to reduce the cavity tones or reduce the overall sound pressure level. Resonant, non-resonant, and multi-mode resonance are studied and actuated at various forcing frequencies, duty cycles, and modes. Furthermore, several different plasma actuator platforms were developed and tested to determine an optimal electrode arrangement during actuation.

Book Plasma Science and Technology

Download or read book Plasma Science and Technology written by Haikel Jelassi and published by BoD – Books on Demand. This book was released on 2019-02-27 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Usually called the "fourth state of matter," plasmas make up more than 99% of known material. In usual terminology, this term generally refers to partially or totally ionized gas and covers a large number of topics with very different characteristics and behaviors. Over the last few decades, the physics and engineering of plasmas was experiencing a renewed interest, essentially born of a series of important applications such as thin-layer deposition, surface treatment, isotopic separation, integrated circuit etchings, medicine, etc. Plasma Science

Book Investigation of Magnetohydrodynamic Plasma Actuators for Aerodynamic Flow Control

Download or read book Investigation of Magnetohydrodynamic Plasma Actuators for Aerodynamic Flow Control written by Brent Joel Pafford and published by . This book was released on 2013 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis describes the analysis, fabrication and testing of a novel magnetohydrodynamic plasma actuator for aerodynamic flow control, specifically, retreating blade stall. A magnetohydrodynamic plasma actuator is comprised of two parallel rail electrodes embedded chord-wise on the upper surface of an airfoil. A pulse forming network generates a low-voltage, high-current repetitive pulsed arc. Self-induced electromagnetic fields force the pulsed arc along the length of the rail electrodes at high velocities, transferring momentum to the surrounding air, creating a high-velocity pulsed air wall jet. A systematic experimental investigation of the effect of plasma actuators on the surrounding air is conducted in stagnant air conditions to gain an understanding of the physical characteristics. These characteristics include voltage and current measurements, pulsed arc velocity measurements, and high speed video imaging. The results show typical pulsed arc velocities of about 100 m/s can be induced with discharge energies of about 300 J per pulse. Additional experimental studies are conducted to quantify the performance of the pulsed arc for potential use in subsonic flow control applications. To gain an estimate of the momentum transferred from the pulsed arc to the surrounding air the plasma actuator is placed in a subsonic open-circuit wind tunnel at a Reynolds number of 4.5 x 105. The induced velocity of the pulsed wall jet is measured using a Laser Doppler Anemometer. The measurements show that the pulsed arc creates a high-velocity pulsed wall jet that extends 40 mm above the airfoils surface and has an induced velocity of 15 m/s greater than the unaltered air flow over the airfoil, with peak velocities of 32 m/s. The magnetohydrodynamic plasma actuator proved to induce velocities an order of magnitude greater than the velocities attained by current state-of-the-art plasma actuators. Moreover, the RailPAc is found to posses the potential for alleviation of retreating blade stall. Future work will include experiments to gain a detailed understanding of the improvements to the static stall angle, the optimal actuator geometry, excitation duty cycle, magnetic field augmentation, and behavior of the plasma armature at high Mach/Reynolds numbers. Particle Image Velocimetry (PIV) will be utilized to improve the induced flow velocity measurements acquired with the LDA.

Book Numerical Investigation of Plasma Actuator Configurations for Flow Separation Control at Multiple Angles of Attack

Download or read book Numerical Investigation of Plasma Actuator Configurations for Flow Separation Control at Multiple Angles of Attack written by Thomas Kelsey West and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The primary objective of the study presented in this thesis was to analyze the effectiveness of aerodynamic plasma actuators as a means of active flow control over a low speed airfoil at multiple angles of attack each corresponding to two different flow separation mechanisms (i.e., laminar separation bubble and turbulent flow separation at stall conditions). Detailed parametric studies based on steady and unsteady Navier-Stokes simulations, modified to include the body force term created by the plasma actuator, were performed for a NACA 0012 airfoil at a chord Reynolds number of 105. In particular, parametric studies were performed to investigate the influence of the number, the location, the imposed body force magnitude (power input) and steady vs. unsteady operation of plasma actuators on the flow control effectiveness. First, the effectiveness of plasma actuators was studied when applied to the airfoil at a relatively low angle of attack, which involved the development of a laminar separation bubble (LSB). Next, the effectiveness of plasma actuators was analyzed at a high angle of attack where the stall of the airfoil occurs with a fully turbulent flow assumption. The results show that plasma actuators can provide significant improvement in aerodynamic performance for the flow conditions considered in this study. For LSB control, as much as a 50% improvement in the lift to drag ratio was observed. Results also show that the same improvement can be achieved using an unsteady or multiple actuators, which can require as much as 75% less power compared to a single, steady actuator. For the stalled airfoil case, as much as a 700% improvement in L/D was observed from a single, steady actuator. Note that this was achieved using a power input eight times higher than what was used for LSB control. Also, unsteady and multiple actuator configurations do not provide the same enhancement as the single, steady actuators. This was found to be due to the nature of the turbulent separation (trailing edge separation) at the stall condition that occurs for the selected airfoil and Reynolds number"--Abstract, leaf iii

Book Study of Plasma Phenomena at High Electric Fields in Applications for Active Flow Control and Ultra short Pulse Laser Drilling

Download or read book Study of Plasma Phenomena at High Electric Fields in Applications for Active Flow Control and Ultra short Pulse Laser Drilling written by Alexandre Likhanskii and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma engineering is one of the most actively growing research areas in modern science. Over the past decade, plasma engineering became a significant part of aerospace engineering, material processing, medicine, geosciences, etc. One of the main goals of plasma research is to discover new perspectives in a wide range of research areas. It makes plasma engineering a truly interdisciplinary subject. Recently, a significant interest in the aerospace community was caused by the possibility of an active flow control using dielectric barrier discharge (DBD) plasma actuators. A number of groups tried to explain the physics of the experimentally observed phenomena. However, the developed models could hardly explain the DBD phenomena even qualitatively. This thesis presents the first complete, comprehensive, physically-based model, which tracks all essential physics of the DBD plasma actuators and utilizes modern numerical capabilities for efficient simulations. By using the developed model, the physics of the plasma actuators was explained. Based on the understanding of the operation of the conventional DBD, driven by a sinusoidal voltage, a novel configuration was proposed. The sinusoidal driving voltage was substituted by the repetitive nanosecond pulses superimposed on the bias voltage. The advantages of the proposed concept over the conventional one were experimentally validated. The developed model demonstrated flexibility for different plasma engineering areas. The model can be used not only for a description of the DBD plasma actuators, but also for a number of problems involving the gas discharges. By using the developed model, plasma generation by the ferroelectric plasma source, which is used in fusion technology, was explained. In the area of material processing, a significant interest was caused by an apparent possibility of precise high intensity ultra-short laser pulse drilling with negligible melt production. However, the experiments did not validate the theories proposed in literature. In order to explain the experimental data and analyze the possibility of reduction of melt generation, a new model for laser pulse drilling was developed in this thesis. The model comprehensively describes laser-material interaction and explains the significant amount of melt production in the case of ultra-short laser pulses. The results of the simulations are in good agreement with the experimental data.

Book Computational Electromagnetic Aerodynamics

Download or read book Computational Electromagnetic Aerodynamics written by Joseph J. S. Shang and published by John Wiley & Sons. This book was released on 2016-03-22 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields and fluid flow and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physic kinetics, and plasmadynamics Integrates interlinking computational model and simulation techniques of aerodynamics and electromagnetics Combines classic plasma drift-diffusion theory and electron impact ionization modeling for electromagnetic-aerodynamic interactions Describes models of internal degrees of freedom for vibration relaxation and electron excitations

Book Boundary Layer Flows   Advances in Experimentation  Modelling and Simulation

Download or read book Boundary Layer Flows Advances in Experimentation Modelling and Simulation written by Zambri Harun and published by BoD – Books on Demand. This book was released on 2024-07-24 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid mechanics is a branch of physics with important applications in daily life. The calculation of flow drag on automobiles and high-speed trains benefits from theories in fluid mechanics. Moreover, many mechanical-based devices such as fluid pumps contribute to efficiency, and thus, to the modernization of society. This book highlights the experimental and theoretical aspects of wall-bounded flows to provide important information about related theories and applications. Boundary layer flow experimentation, modelling, and simulation must be considered together to obtain accurate calculations of parameters such as velocity profiles, pressure distribution, and turbulence level. This book is organized into three sections on the structure of the boundary layer, drag reduction initiatives using active control, and the verification and applications of flow mechanics. Chapters discuss the boundary layer type of different pressure gradients, Reynolds number, and speeds from 5 m/s to Mach 3. They also present the results of research on the active control technique for drag reduction initiatives to achieve efficient turbulence in high-speed applications, flow meter devices, and turbulence-generated noise mitigation initiatives.

Book Plasma Science and Technology

Download or read book Plasma Science and Technology written by Alexander Fridman and published by John Wiley & Sons. This book was released on 2024-02-05 with total page 805 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma Science and Technology An accessible introduction to the fundamentals of plasma science and its applications In Plasma Science and Technology: Lectures in Physics, Chemistry, Biology, and Engineering, distinguished researcher Dr. Alexander Fridman delivers a comprehensive introduction to plasma technology, including fulsome descriptions of the fundamentals of plasmas and discharges. The author discusses a wide variety of practical applications of the technology to medicine, energy, catalysis, coatings, and more, emphasizing engineering and science fundamentals. Offering readers illuminating problems and concept questions to support understanding and self-study, the book also details organic and inorganic applications of plasma technologies, demonstrating its use in nature, in the lab, and in both novel and well-known applications. Readers will also find: A thorough introduction to the kinetics of excited atoms and molecules Comprehensive explorations of non-equilibrium atmospheric pressure cold discharges Practical discussions of plasma processing in microelectronics and other micro-technologies Expert treatments of plasma in environmental control technologies, including the cleaning of air, exhaust gases, water, and soil Perfect for students of chemical engineering, physics, and chemistry, Plasma Science and Technology will also benefit professionals working in these fields who seek a contemporary refresher in the fundamentals of plasma science and its applications.