EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamental Aspects of Dislocation Interactions

Download or read book Fundamental Aspects of Dislocation Interactions written by G. Kostorz and published by Elsevier. This book was released on 2013-09-03 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental Aspects of Dislocation Interactions: Low-Energy Dislocation Structures III covers the papers presented at a European Research Conference on Plasticity of Materials-Fundamental Aspects of Dislocation Interactions: Low-Energy Dislocation Structures III, held on August 30-September 4, 1992 in Ascona, Switzerland. The book focuses on the processes, technologies, reactions, transformations, and approaches involved in dislocation interactions. The selection first offers information on work softening and Hall-Petch hardening in extruded mechanically alloyed alloys and dynamic origin of dislocation structures in deformed solids. Discussions focus on stress-strain behavior in relation to composition, structure, and annealing; comparison of stress-strain curves with work softening theory; sweeping and trapping mechanism; and model of dipolar wall structure formation. The text then ponders on plastic instabilities and their relation to fracture and dislocation and kink dynamics in f.c.c. metals studied by mechanical spectroscopy. The book takes a look at misfit dislocation generation mechanisms in heterostructures and evolution of dislocation structure on the interfaces associated with diffusionless phase transitions. Discussions focus on dislocation representation of a wall of elastic domains; equation of equilibrium of an elastic domain; transformation of dislocations; and theoretical and experimental background. The selection is a valuable reference for readers interested in dislocation interactions.

Book Fundamental Aspects of Dislocation Theory

Download or read book Fundamental Aspects of Dislocation Theory written by John Arthur Simmons and published by . This book was released on 1970 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to Composite Materials

Download or read book An Introduction to Composite Materials written by D. Hull and published by Cambridge University Press. This book was released on 1996-08-13 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.

Book Fundamental Aspects of Dislocation Theory

Download or read book Fundamental Aspects of Dislocation Theory written by John Arthur Simmons and published by . This book was released on 1970 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theory of Dislocations

Download or read book Theory of Dislocations written by John Price Hirth and published by . This book was released on 1992 with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a comprehensive treatment of the fundamentals of dislocations. This book covers the elastic theory of straight and curved dislocations, and includes a chapter on elastic anisotropy. It also presents applications to the theory of dislocation motion at low and high temperatures.

Book Dislocations

    Book Details:
  • Author : J. Friedel
  • Publisher : Elsevier
  • Release : 2013-10-22
  • ISBN : 1483135926
  • Pages : 540 pages

Download or read book Dislocations written by J. Friedel and published by Elsevier. This book was released on 2013-10-22 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dislocations deals with the main properties of dislocations, including motion, climb, and vacancies. Topics covered include the elastic theory of dislocations, imperfect dislocations, and crystal growth, along with dislocation networks, annealing, and grain boundaries. The interaction of dislocations with other defects is also discussed. This book is comprised of 17 chapters and begins with an overview of the general properties of dislocations, with emphasis on perfect and real crystals and the general case for translation dislocations. The reader is then introduced to the motion of dislocations, including glide; vacancies and interstitial atoms; dislocation climb; imperfect dislocations and surfaces of misfit; and crystal growth, including growth from a liquid phase. The next section is devoted to the more or less complex networks of dislocations that can be formed in crystals, and to the plastic properties corresponding to these arrays. The remaining chapters explore the interactions of dislocations with other crystalline defects, primarily impurity atoms. This monograph is intended for physicists, metallurgists, materials scientists, research and engineering students, and research engineers.

Book Dislocations and Plastic Deformation

Download or read book Dislocations and Plastic Deformation written by I. Kovács and published by Elsevier. This book was released on 2016-07-08 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dislocations and Plastic Deformation deals with dislocations and plastic deformation, and specifically discusses topics ranging from deformation of single crystals and dislocations in the lattice to the fundamentals of the continuum theory, the properties of point defects in crystals, multiplication of dislocations, and partial dislocations. The effect of lattice defects on the physical properties of metals is also considered. Comprised of nine chapters, this book begins by providing a short and, where possible, precise explanation of dislocation theory. The first six chapters discuss the properties of dislocations and point defects both in crystals and in an elastic continuum. The reader is then introduced to some applications of dislocation theory that show, for instance, the difficulties involved in understanding the hardening of alloys and the work-hardening of pure metals. This book concludes by analyzing the effect of heat treatment on the defect structure in metals. This text will be of interest to students and practitioners in the field of physics.

Book Crystal Growth   From Fundamentals to Technology

Download or read book Crystal Growth From Fundamentals to Technology written by Georg Müller and published by Elsevier. This book was released on 2004-07-07 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains 5 chapters with 19 contributions form internationally well acknowledged experts in various fields of crystal growth. The topics are ranging from fundamentals (thermodynamic of epitaxy growth, kinetics, morphology, modeling) to new crystal materials (carbon nanocrystals and nanotubes, biological crystals), to technology (Silicon Czochralski growth, oxide growth, III-IV epitaxy) and characterization (point defects, X-ray imaging, in-situ STM). It covers the treatment of bulk growth as well as epitaxy by anorganic and organic materials.

Book Imperfections in Crystalline Solids

Download or read book Imperfections in Crystalline Solids written by Wei Cai and published by Cambridge University Press. This book was released on 2016-09-15 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides students with a complete working knowledge of the properties of imperfections in crystalline solids. Readers will learn how to apply the fundamental principles of mechanics and thermodynamics to defect properties in materials science, gaining all the knowledge and tools needed to put this into practice in their own research. Beginning with an introduction to defects and a brief review of basic elasticity theory and statistical thermodynamics, the authors go on to guide the reader in a step-by-step way through point, line, and planar defects, with an emphasis on their structural, thermodynamic, and kinetic properties. Numerous end-of-chapter exercises enable students to put their knowledge into practice, and with solutions for instructors and MATLAB® programs available online, this is an essential text for advanced undergraduate and introductory graduate courses in crystal defects, as well as being ideal for self-study.

Book Low energy Dislocation Structures

Download or read book Low energy Dislocation Structures written by M. Nabil Bassim and published by . This book was released on 1986 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies

Download or read book Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies written by Leonid M. Zubov and published by Springer Science & Business Media. This book was released on 2008-09-11 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author applies methods of nonlinear elasticity to investigate the defects in the crystal structure of solids such as dislocations and disclinations that characterize the plastic and strength properties of many materials. Contrary to the geometrically motivated nonlinear theory of dislocations continuously distributed over the body, nonlinear analysis of isolated dislocations and disclinations is less developed; it is given for the first time in this book, and in a form accessible to both students and researchers. The general theory of Volterra's dislocations in elastic media under large deformations is developed. A number of exact solutions are found. The nonlinear approach to investigating the isolated defects produces results that often differ qualitatively from those of the linear theory.

Book Fundamentals of Radiation Materials Science

Download or read book Fundamentals of Radiation Materials Science written by GARY S. WAS and published by Springer. This book was released on 2016-07-08 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.

Book Fundamentals of Hydrogen Embrittlement

Download or read book Fundamentals of Hydrogen Embrittlement written by Michihiko Nagumo and published by Springer Nature. This book was released on 2023-05-22 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second edition of the one originally published in 2016, as the first comprehensive treatment on the fundamentals of hydrogen embrittlement of metallic materials, mainly steel. The book provides students and researchers engaging in hydrogen problems with a unified view of the subject. Establishing reliable principles for materials design against hydrogen embrittlement and assessing their performance are recent urgent industrial needs in developing high-strength steel for hydrogen energy equipment and weight-reducing vehicles. The interdisciplinary nature of the subject, covering metal physics, materials science, and mechanics of fracture, has disturbed a profound understanding of the problem. In this book, previous studies are critically reviewed, and supplemental descriptions of fundamental ideas are presented when necessary. Emphasis is placed on experimental facts, with particular attention to their implication rather than phenomenological appearance. The adopted experimental conditions are also noted since the operating mechanism of hydrogen might differ by material and environment. For theories, employed assumptions and premises are noted to examine their versatility. Progress in the past decade in experimental and theoretical tools is remarkable and has nearly unveiled characteristic features of hydrogen embrittlement. Proposed models have almost covered feasible aspects of the function of hydrogen. This second edition has enriched the contents with recent crucial findings. Chapters on the manifestation of embrittlement in the deterioration of mechanical properties and microscopic features are reorganized, and the description is revised for the convenience of readers’ systematic understanding. A new chapter is created for delayed fracture in atmospheric environments as a conclusive subject of critical ideas presented in this book.

Book NBS Special Publication

Download or read book NBS Special Publication written by and published by . This book was released on 1968 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1971 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Crystal Plasticity Finite Element Methods

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Book Fundamentals of Strength

Download or read book Fundamentals of Strength written by Paul S. Follansbee and published by John Wiley & Sons. This book was released on 2014-03-03 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers data, examples, and applications supporting the use of the mechanical threshold stress (MTS) model Written by Paul S. Follansbee, an international authority in the field, this book explores the underlying theory, mechanistic basis, and implementation of the mechanical threshold stress (MTS) model. Readers are introduced to such key topics as mechanical testing, crystal structure, thermodynamics, dislocation motion, dislocation–obstacle interactions, hardening through dislocation accumulation, and deformation kinetics. The models described in this book support the emerging theme of Integrated Computational Materials Engineering (ICME) by offering a foundation for the bridge between length scales characterizing the mesoscale (mechanistic) and the macroscopic. Fundamentals of Strength begins with a chapter that introduces various approaches to measuring the strength of metals. Next, it covers: Structure and bonding Contributions to strength Dislocation–obstacle interactions Constitutive law for metal deformation Further MTS model developments Data analysis: deriving MTS model parameters The next group of chapters examines the application of the MTS model to copper and nickel, BCC metals and alloys, HCP metals and alloys, austenitic stainless steels, and heavily deformed metals. The final chapter offers suggestions for the continued development and application of the MTS model. To help readers fully understand the application of the MTS model, the author presents two fictional materials along with extensive data sets. In addition, end-of-chapter exercises give readers the opportunity to apply the models themselves using a variety of data sets. Appropriate for both students and materials researchers, Fundamentals of Strength goes beyond theory, offering readers a model that is fully supported with examples and applications.