EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Functions of a Real Variable

Download or read book Functions of a Real Variable written by N. Bourbaki and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an English translation of Bourbaki’s Fonctions d'une Variable Réelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.

Book Theory of Functions of a Real Variable

Download or read book Theory of Functions of a Real Variable written by I. P. Natanson and published by . This book was released on 1961 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theory of Functions of a Real Variable

Download or read book Theory of Functions of a Real Variable written by Shlomo Sternberg and published by Orange Grove Texts Plus. This book was released on 2009-09-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is for a beginning graduate course in real variables and functional analysis. It assumes that the student has seen the basics of real variable theory and point set topology. Contents: 1) The topology of metric spaces. 2) Hilbert Spaces and Compact operators. 3) The Fourier Transform. 4) Measure theory. 5) The Lebesgue integral. 6) The Daniell integral. 7) Wiener measure, Brownian motion and white noise. 8) Haar measure. 9) Banach algebras and the spectral theorem. 10) The spectral theorem. 11) Stone's theorem. 12) More about the spectral theorem. 13) Scattering theory.

Book The Theory of Functions of a Real Variable and the Theory of Fourier s Series

Download or read book The Theory of Functions of a Real Variable and the Theory of Fourier s Series written by Ernest William Hobson and published by . This book was released on 1907 with total page 791 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Theory of Functions of a Real Variable  Second Edition

Download or read book The Theory of Functions of a Real Variable Second Edition written by Ralph Jeffery and published by University of Toronto Press. This book was released on 1951-12-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook leads the reader by easy stages through the essential parts of the theory of sets and theory of measure to the properties of the Lebesgue integral. The first part of the book gives a general introduction to functions of a real variable, measure, and integration, while the second part treats the problem of inverting the derivative of continuous functions, leading to the Denjoy integrals, and studies the derivates and approximate derivates of functions of a real variable on arbitrary linear sets. The author considers the presentation of this second part as the main purpose of his book.

Book Real Analysis

    Book Details:
  • Author : Miklós Laczkovich
  • Publisher : Springer
  • Release : 2015-10-08
  • ISBN : 1493927663
  • Pages : 486 pages

Download or read book Real Analysis written by Miklós Laczkovich and published by Springer. This book was released on 2015-10-08 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated. In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.

Book Mathematics and Mechanics   The Interplay

Download or read book Mathematics and Mechanics The Interplay written by Luigi Morino and published by Springer Nature. This book was released on 2021-06-19 with total page 1019 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics plays an important role in mechanics and other human endeavours. Validating examples in this first volume include, for instance: the connection between the golden ratio (the “divine proportion" used by Phidias and many other artists and enshrined in Leonardo's Vitruvian Man, shown on the front cover), and the Fibonacci spiral (observable in botany, e.g., in the placement of sunflower seeds); is the coast of Tuscany infinitely long?; the equal-time free fall of a feather and a lead ball in a vacuum; a simple diagnostic for changing your car's shocks; the Kepler laws of the planets; the dynamics of the Sun-Earth-Moon system; the tides' mechanism; the laws of friction and a wheel rolling down a partially icy slope; and many more. The style is colloquial. The emphasis is on intuition - lengthy but intuitive proofs are preferred to simple non-intuitive ones. The mathematical/mechanical sophistication gradually increases, making the volume widely accessible. Intuition is not at the expense of rigor. Except for grammar-school material, every statement that is later used is rigorously proven. Guidelines that facilitate the reading of the book are presented. The interplay between mathematics and mechanics is presented within a historical context, to show that often mechanics stimulated mathematical developments - Newton comes to mind. Sometimes mathematics was introduced independently of its mechanics applications, such as the absolute calculus for Einstein's general theory of relativity. Bio-sketches of all the scientists encountered are included and show that many of them dealt with both mathematics and mechanics.

Book Theory of Approximation of Functions of a Real Variable

Download or read book Theory of Approximation of Functions of a Real Variable written by A. F. Timan and published by Elsevier. This book was released on 2014-07-22 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Approximation of Functions of a Real Variable discusses a number of fundamental parts of the modern theory of approximation of functions of a real variable. The material is grouped around the problem of the connection between the best approximation of functions to their structural properties. This text is composed of eight chapters that highlight the relationship between the various structural properties of real functions and the character of possible approximations to them by polynomials and other functions of simple construction. Each chapter concludes with a section containing various problems and theorems, which supplement the main text. The first chapters tackle the Weierstrass's theorem, the best approximation by polynomials on a finite segment, and some compact classes of functions and their structural properties. The subsequent chapters describe some properties of algebraic polynomials and transcendental integral functions of exponential type, as well as the direct theorems of the constructive theory of functions. These topics are followed by discussions of differential and constructive characteristics of converse theorems. The final chapters explore other theorems connecting the best approximations functions with their structural properties. These chapters also deal with the linear processes of approximation of functions by polynomials. The book is intended for post-graduate students and for mathematical students taking advanced courses, as well as to workers in the field of the theory of functions.

Book Basic Analysis I

    Book Details:
  • Author : James K. Peterson
  • Publisher : CRC Press
  • Release : 2020-05-13
  • ISBN : 1351679457
  • Pages : 595 pages

Download or read book Basic Analysis I written by James K. Peterson and published by CRC Press. This book was released on 2020-05-13 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basic Analysis I: Functions of a Real Variable is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists. This book is written with the aim of balancing the theory and abstraction with clear explanations and arguments, so that students who are from a variety of different areas can follow this text and use it profitably for self-study. It can also be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduate mathematics students, or for those in other disciplines requiring a solid grounding in abstraction Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions

Book Intermediate Analysis

Download or read book Intermediate Analysis written by John Meigs Hubbell Olmsted and published by . This book was released on 1956 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Function Theory of One Complex Variable

Download or read book Function Theory of One Complex Variable written by Robert Everist Greene and published by American Mathematical Soc.. This book was released on 2006 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.

Book Real and Abstract Analysis

Download or read book Real and Abstract Analysis written by E. Hewitt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is first of all designed as a text for the course usually called "theory of functions of a real variable". This course is at present cus tomarily offered as a first or second year graduate course in United States universities, although there are signs that this sort of analysis will soon penetrate upper division undergraduate curricula. We have included every topic that we think essential for the training of analysts, and we have also gone down a number of interesting bypaths. We hope too that the book will be useful as a reference for mature mathematicians and other scientific workers. Hence we have presented very general and complete versions of a number of important theorems and constructions. Since these sophisticated versions may be difficult for the beginner, we have given elementary avatars of all important theorems, with appro priate suggestions for skipping. We have given complete definitions, ex planations, and proofs throughout, so that the book should be usable for individual study as well as for a course text. Prerequisites for reading the book are the following. The reader is assumed to know elementary analysis as the subject is set forth, for example, in TOM M. ApOSTOL'S Mathematical Analysis [Addison-Wesley Publ. Co., Reading, Mass., 1957], or WALTER RUDIN'S Principles of M athe nd matical Analysis [2 Ed., McGraw-Hill Book Co., New York, 1964].

Book Real Variable Methods in Harmonic Analysis

Download or read book Real Variable Methods in Harmonic Analysis written by Alberto Torchinsky and published by Elsevier. This book was released on 2016-06-03 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real-Variable Methods in Harmonic Analysis deals with the unity of several areas in harmonic analysis, with emphasis on real-variable methods. Active areas of research in this field are discussed, from the Calderón-Zygmund theory of singular integral operators to the Muckenhoupt theory of Ap weights and the Burkholder-Gundy theory of good ? inequalities. The Calderón theory of commutators is also considered. Comprised of 17 chapters, this volume begins with an introduction to the pointwise convergence of Fourier series of functions, followed by an analysis of Cesàro summability. The discussion then turns to norm convergence; the basic working principles of harmonic analysis, centered around the Calderón-Zygmund decomposition of locally integrable functions; and fractional integration. Subsequent chapters deal with harmonic and subharmonic functions; oscillation of functions; the Muckenhoupt theory of Ap weights; and elliptic equations in divergence form. The book also explores the essentials of the Calderón-Zygmund theory of singular integral operators; the good ? inequalities of Burkholder-Gundy; the Fefferman-Stein theory of Hardy spaces of several real variables; Carleson measures; and Cauchy integrals on Lipschitz curves. The final chapter presents the solution to the Dirichlet and Neumann problems on C1-domains by means of the layer potential methods. This monograph is intended for graduate students with varied backgrounds and interests, ranging from operator theory to partial differential equations.

Book Advanced R

    Book Details:
  • Author : Hadley Wickham
  • Publisher : CRC Press
  • Release : 2015-09-15
  • ISBN : 1498759807
  • Pages : 669 pages

Download or read book Advanced R written by Hadley Wickham and published by CRC Press. This book was released on 2015-09-15 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.

Book Advanced Calculus

Download or read book Advanced Calculus written by Hans Sagan and published by Houghton Mifflin. This book was released on 1974 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Physics

    Book Details:
  • Author : V. Balakrishnan
  • Publisher : Springer Nature
  • Release : 2020-04-07
  • ISBN : 3030396800
  • Pages : 790 pages

Download or read book Mathematical Physics written by V. Balakrishnan and published by Springer Nature. This book was released on 2020-04-07 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at advanced undergraduate and graduate students interested in learning the fundamental mathematical concepts and tools widely used in different areas of physics. The author draws on a vast teaching experience, and presents a comprehensive and self-contained text which explains how mathematics intertwines with and forms an integral part of physics in numerous instances. Rather than emphasizing rigorous proofs of theorems, specific examples and physical applications (such as fluid dynamics, electromagnetism, quantum mechanics, etc.) are invoked to illustrate and elaborate upon the relevant mathematical techniques. The early chapters of the book introduce different types of functions, vectors and tensors, vector calculus, and matrices. In the subsequent chapters, more advanced topics like linear spaces, operator algebras, special functions, probability distributions, stochastic processes, analytic functions, Fourier series and integrals, Laplace transforms, Green's functions and integral equations are discussed. The book also features about 400 exercises and solved problems interspersed throughout the text at appropriate junctures, to facilitate the logical flow and to test the key concepts. Overall this book will be a valuable resource for a wide spectrum of students and instructors of mathematical physics.

Book Introduction to Analysis in One Variable

Download or read book Introduction to Analysis in One Variable written by Michael E. Taylor and published by American Mathematical Soc.. This book was released on 2020-08-11 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a text for students who have had a three-course calculus sequence and who are ready to explore the logical structure of analysis as the backbone of calculus. It begins with a development of the real numbers, building this system from more basic objects (natural numbers, integers, rational numbers, Cauchy sequences), and it produces basic algebraic and metric properties of the real number line as propositions, rather than axioms. The text also makes use of the complex numbers and incorporates this into the development of differential and integral calculus. For example, it develops the theory of the exponential function for both real and complex arguments, and it makes a geometrical study of the curve (expit) (expit), for real t t, leading to a self-contained development of the trigonometric functions and to a derivation of the Euler identity that is very different from what one typically sees. Further topics include metric spaces, the Stone–Weierstrass theorem, and Fourier series.