EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Functional Metal Oxides

Download or read book Functional Metal Oxides written by Satishchandra Balkrishna Ogale and published by John Wiley & Sons. This book was released on 2013-11-08 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional oxides are used both as insulators and metallic conductors in key applications across all industrial sectors. This makes them attractive candidates in modern technology ? they make solar cells cheaper, computers more efficient and medical instrumentation more sensitive. Based on recent research, experts in the field describe novel materials, their properties and applications for energy systems, semiconductors, electronics, catalysts and thin films. This monograph is divided into 6 parts which allows the reader to find their topic of interest quickly and efficiently. * Magnetic Oxides * Dopants, Defects and Ferromagnetism in Metal Oxides * Ferroelectrics * Multiferroics * Interfaces and Magnetism * Devices and Applications This book is a valuable asset to materials scientists, solid state chemists, solid state physicists, as well as engineers in the electric and automotive industries.

Book Physics of Transition Metal Oxides

Download or read book Physics of Transition Metal Oxides written by Sadamichi Maekawa and published by Springer Science & Business Media. This book was released on 2004-06-22 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.

Book Functional Metal Oxide Nanostructures

Download or read book Functional Metal Oxide Nanostructures written by Junqiao Wu and published by Springer Science & Business Media. This book was released on 2011-09-22 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal oxides and particularly their nanostructures have emerged as animportant class of materials with a rich spectrum of properties and greatpotential for device applications. In this book, contributions from leadingexperts emphasize basic physical properties, synthesis and processing, and thelatest applications in such areas as energy, catalysis and data storage. Functional Metal Oxide Nanostructuresis an essential reference for any materials scientist or engineer with aninterest in metal oxides, and particularly in recent progress in defectphysics, strain effects, solution-based synthesis, ionic conduction, and theirapplications.

Book Correlated Functional Oxides

Download or read book Correlated Functional Oxides written by Hiroaki Nishikawa and published by Springer. This book was released on 2016-11-01 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a variety of basic sciences and applications of the nanocomposites and heterostructures of functional oxides. The presence of a high density of interfaces and the differences in their natures are described by the authors. Both nanocomposites and heterostructures are detailed in depth by researchers from each of the research areas in order to compare their similarities and differences. A new interfacial material of heterostructure of strongly correlated electron systems is introduced.

Book Tailored Functional Oxide Nanomaterials

Download or read book Tailored Functional Oxide Nanomaterials written by Chiara Maccato and published by John Wiley & Sons. This book was released on 2022-03-02 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tailored Functional Oxide Nanomaterials A comprehensive exploration of the preparation and application of metal oxide nanomaterials Tailored Functional Oxide Nanomaterials: From Design to Multi-Purpose Applications delivers a one-of-a-kind discussion of the fundamentals and key applications of metal oxide nanomaterials. The book explores everything from their preparation to the mastering of their characteristics in an interdisciplinary view. The distinguished authors address theoretical research and advanced technological utilizations, illustrating key issues for the understanding and real-world end-uses of the most important class of inorganic materials. The interplay between the design, preparation, chemico-physical characterization, and functional behaviors of metal oxide nanomaterials in a variety of fields is presented. Up-to-date work and knowledge on these materials is also described, with fulsome summaries of important applications that are relevant to researchers pursuing safety, sustainability, and energy end-uses. Readers will also find: A thorough introduction to vapor phase growth of metal oxide thin films and nanostructures Comprehensive explorations of addressing complex transition metal oxides at the nanoscale, including bottom-up syntheses of nano-objects and properties Practical discussions of nanosized oxides supported on mats of carbon nanotubes, including synthesis strategies and performances of Ti/CNT systems In-depth examinations of computational approaches to the study of oxide nanomaterials and nanoporous oxides Perfect for materials scientists, inorganic chemists, physicists, catalytic chemists, and chemical engineers, Tailored Functional Oxide Nanomaterials will also earn a place in the libraries of solid-state chemists.

Book Tuning electronic properties of transition metal oxides at nanoscale by means of redox processes

Download or read book Tuning electronic properties of transition metal oxides at nanoscale by means of redox processes written by Karol Cieslik and published by Karol Cieslik. This book was released on with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: The climate crisis that we are facing has galvanized the scientific and engineering communities and has led to the rapid development of new, efficient, environmentally-friendly devices. One of the most promising classes of materials for such applications are transition metal oxides. This is due to the fact that by controlling the oxygen content in these crystals by means of reduction and oxidation, the material properties can be tuned in a wide range of values. Thus, the transition metal oxides, such as the model crystals, titanium dioxide (TiO2) and strontium titanate (SrTiO3), find use in so many different fields, from photocatalysis, to energy storage (solid oxide fuel cells), information technology (memristors) and even healthcare (antibacterial films). This PhD thesis is an investigation into the effect of reduction and oxidation on the electronic properties of transition metal oxides. These processes were studied at nanoscale using a multitude of techniques to provide a thorough characterization of the changes that occur in the studied systems, i.e. TiO2 and SrTiO3. Moreover, the experiments were performed in both ultra high vacuum (UHV) conditions, as well as in oxygen, and even in atmospheric air, in order to comprehensively describe the changes in properties and to bring the results closer to applications. The goal of the dissertation was to study the evolution of the electronic properties, i.e. the work function and conductivity, due to redox processes, and to add to the general understanding of these processes. The experiments revealed that the electronic properties may be tuned. In case of using reduction by means of annealing in UHV, ion sputtering, and repeated ion sputtering and annealing, and for oxidation by exposure to oxygen or air at room temperature, and annealing in oxygen. Using this range of methods, the conductivity of TiO2 can be changed from semiconductive-like to metallic-like. Furthermore, the work function of the transition metal oxides can be tuned in a wide range, from 3.4 eV to 5.0 eV for TiO2, and from 2.9 eV to 4.5 eV for SrTiO3. This is associated with changes in surface and subsurface composition, crystallography, morphology and even with the growth of new oxide phases. The key findings in the field of surface science were the description of the changes in electronic properties due to repeated sputtering and annealing, and the presence of oxygen getter substances. These results are important, because they touch upon the very basis of every experiment in the field, i.e. the preparation of crystals. This work can be used to foster greater reproducibility of experiments, as well to provide new means of designing experiments. Another object of the study was the technologically interesting system of conductive nanowires on semiconductive SrTiO3 substrate. It was shown that the nanostructures are composed of a TiO core covered with a layer of Ti3O5. The evolution of the system, starting from atomically flat strontium titanate, through nanowire-covered substrate to a crystal with a layer of porous titanium suboxides was described. The effect of annealing in oxygen on wire-covered surface was been investigated.

Book Integration of Functional Oxides with Semiconductors

Download or read book Integration of Functional Oxides with Semiconductors written by Alexander A. Demkov and published by Springer Science & Business Media. This book was released on 2014-02-20 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the basic physical principles of the oxide/semiconductor epitaxy and offers a view of the current state of the field. It shows how this technology enables large-scale integration of oxide electronic and photonic devices and describes possible hybrid semiconductor/oxide systems. The book incorporates both theoretical and experimental advances to explore the heteroepitaxy of tuned functional oxides and semiconductors to identify material, device and characterization challenges and to present the incredible potential in the realization of multifunctional devices and monolithic integration of materials and devices. Intended for a multidisciplined audience, Integration of Functional Oxides with Semiconductors describes processing techniques that enable atomic-level control of stoichiometry and structure and reviews characterization techniques for films, interfaces and device performance parameters. Fundamental challenges involved in joining covalent and ionic systems, chemical interactions at interfaces, multi-element materials that are sensitive to atomic-level compositional and structural changes are discussed in the context of the latest literature. Magnetic, ferroelectric and piezoelectric materials and the coupling between them will also be discussed. GaN, SiC, Si, GaAs and Ge semiconductors are covered within the context of optimizing next-generation device performance for monolithic device processing.

Book Oxide Surfaces

    Book Details:
  • Author :
  • Publisher : Elsevier
  • Release : 2001-05-21
  • ISBN : 0080538312
  • Pages : 677 pages

Download or read book Oxide Surfaces written by and published by Elsevier. This book was released on 2001-05-21 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a multi-author survey (in 15 chapters) of the current state of knowledge and recent developments in our understanding of oxide surfaces. The author list includes most of the acknowledged world experts in this field. The material covered includes fundamental theory and experimental studies of the geometrical, vibrational and electronic structure of such surfaces, but with a special emphasis on the chemical properties and associated reactivity. The main focus is on metal oxides but coverage extends from 'simple' rocksalt materials such as MgO through to complex transition metal oxides with different valencies.

Book Density Functional Methods In Physics

Download or read book Density Functional Methods In Physics written by Reiner M. Dreizler and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book First Principles Approaches to Spectroscopic Properties of Complex Materials

Download or read book First Principles Approaches to Spectroscopic Properties of Complex Materials written by Cristiana Di Valentin and published by Springer. This book was released on 2014-09-26 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.

Book Metal Oxide Defects

Download or read book Metal Oxide Defects written by Vijay Kumar and published by Elsevier. This book was released on 2022-11-19 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Defects: Fundamentals, Design, Development and Applications provides a broad perspective on the development of advanced experimental techniques to study defects and their chemical activity and catalytic reactivity in various metal oxides. This book highlights advances in characterization and analytical techniques to achieve better understanding of a wide range of defects, most importantly, state-of-the-art methodologies for controlling defects. The book provides readers with pathways to apply basic principles and interpret the behavior of metal oxides. After reviewing characterization and analytical techniques, the book focuses on the relationship of defects to the properties and performance of metal oxides. Finally, there is a review of the methods to control defects and the applications of defect engineering for the design of metal oxides for applications in optoelectronics, energy, sensing, and more. This book is a key reference for materials scientists and engineers, chemists, and physicists. - Reviews advances in characterization and analytical techniques to understand the behavior of defects in metal oxide materials - Introduces defect engineering applied to the design of metal oxide materials with desirable properties - Discusses applications of defect engineering to enhance the performance of materials for a wide range of applications, with an emphasis on optoelectronics

Book Resistive Switching

Download or read book Resistive Switching written by Daniele Ielmini and published by . This book was released on 2016 with total page 755 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its comprehensive coverage, this reference introduces readers to the wide topic of resistance switching, providing the knowledge, tools, and methods needed to understand, characterize and apply resistive switching memories. Starting with those materials that display resistive switching behavior, the book explains the basics of resistive switching as well as switching mechanisms and models. An in-depth discussion of memory reliability is followed by chapters on memory cell structures and architectures, while a section on logic gates rounds off the text. An invaluable self-contained book for materials scientists, electrical engineers and physicists dealing with memory research and development.

Book Functional Hybrid Materials

Download or read book Functional Hybrid Materials written by Pedro Gómez-Romero and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Hybrid Materials consist of both organic and inorganic components, assembled for the purpose of generating desirable properties and functionalities. The aim is twofold: to bring out or enhance advantageous chemical, electrochemical, magnetic or electronic characteristics and at the same time to reduce or wholly suppress undesirable properties or effects. Another target is the creation of entirely new material behavior. The vast number of hybrid material components available has opened up a wide and diversified field of fascinating research. In this book, a team of highly renowned experts gives an in-depth overview, illustrating the superiority of well-designed hybrid materials and their potential applications.

Book Organic Light Emitting Diodes  OLEDs

Download or read book Organic Light Emitting Diodes OLEDs written by Alastair Buckley and published by Elsevier. This book was released on 2013-08-31 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic light-emitting diodes (OLEDs) are opening up exciting new applications in the area of lighting and displays. OLEDs are self emissive and by careful materials and device design can generate colours across the visible spectrum. Together with simple monolithic fabrication on a range of different substrates, these diverse material properties give OLEDs key advantages over existing display and lighting technology. This important book summarises key research on materials, engineering and the range of applications of these versatile materials.Part one covers materials for OLEDs. Chapters review conjugated polymers, transparent conducting thin films, iridium complexes and phosphorescent materials. Part two discusses the operation and engineering of OLED devices. Chapters discuss topics such as highly efficient pin-type OLEDs, amorphous organic semiconductors, nanostructuring techniques, light extraction, colour tuning, printing techniques, fluorenone defects and disruptive characteristics as well as durability issues. Part three explores the applications of OLEDs in displays and solid-state lighting. Applications discussed include displays, microdisplays and transparent OLEDs, sensors and large-area OLED lighting panels.Organic light-emitting diodes (OLEDs) is a standard reference for engineers working in lighting, display technology and the consumer electronics sectors, as well as those researching OLEDs. - Summarises key research on the materials, engineering and applications of OLEDs - Reviews conjugated polymers, transparent conducting thin films - Considers nanostructuring OLEDS for increasing levels of efficiency

Book Theoretical and Computational Methods in Mineral Physics

Download or read book Theoretical and Computational Methods in Mineral Physics written by Renata M. Wentzcovitch and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-17 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 71 of Reviews in Mineralogy and Geochemistry represents an extensive review of the material presented by the invited speakers at a short course on Theoretical and Computational Methods in Mineral Physics held prior (December 10-12, 2009) to the Annual fall meeting of the American Geophysical Union in San Francisco, California. The meeting was held at the Doubletree Hotel & Executive Meeting Center in Berkeley, California. Contents: Density functional theory of electronic structure: a short course for mineralogists and geophysicists The Minnesota density functionals and their applications to problems in mineralogy and geochemistry Density-functional perturbation theory for quasi-harmonic calculations Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory First principles quasiharmonic thermoelasticity of mantle minerals An overview of quantum Monte Carlo methods Quantum Monte Carlo studies of transition metal oxides Accurate and efficient calculations on strongly correlated minerals with the LDA+U method: review and perspectives Spin-state crossover of iron in lower-mantle minerals: results of DFT+U investigations Simulating diffusion Modeling dislocations and plasticity of deep earth materials Theoretical methods for calculating the lattice thermal conductivity of minerals Evolutionary crystal structure prediction as a method for the discovery of minerals and materials Multi-Mbar phase transitions in minerals Computer simulations on phase transitions in ice Iron at Earth’s core conditions from first principles calculations First-principles molecular dynamics simulations of silicate melts: structural and dynamical properties Lattice dynamics from force-fields as a technique for mineral physics An efficient cluster expansion method for binary solid solutions: application to the halite-silvite, NaCl-KCl, system Large scale simulations Thermodynamics of the Earth’s mantle

Book Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices

Download or read book Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices written by Vijay B. Pawade and published by CRC Press. This book was released on 2020-05-21 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal oxide nanoparticles exhibit potential applications in energy and environmental fields, such as solar cells, fuel cells, hydrogen energy, and energy storage devices. This book covers all points from synthesis, properties, and applications of transition metal oxide nanoparticle materials in energy storage and conversion devices. Aimed at graduate-level students and researchers associated with the energy and environment sector, this book addresses the application of nontoxic and environmentally friendly metal oxide materials for a clean environment and deals with synthesis properties and application metal oxides materials for energy conversion, energy storage, and hydrogen generation.

Book Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems

Download or read book Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems written by David D. O'Regan and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Density functional theory (DFT) has become the standard workhorse for quantum mechanical simulations as it offers a good compromise between accuracy and computational cost. However, there are many important systems for which DFT performs very poorly, most notably strongly-correlated materials, resulting in a significant recent growth in interest in 'beyond DFT' methods. The widely used DFT+U technique, in particular, involves the addition of explicit Coulomb repulsion terms to reproduce the physics of spatially-localised electronic subspaces. The magnitude of these corrective terms, measured by the famous Hubbard U parameter, has received much attention but less so for the projections used to delineate these subspaces. The dependence on the choice of these projections is studied in detail here and a method to overcome this ambiguity in DFT+U, by self-consistently determining the projections, is introduced. The author shows how nonorthogonal representations for electronic states may be used to construct these projections and, furthermore, how DFT+U may be implemented with a linearly increasing cost with respect to system size. The use of nonorthogonal functions in the context of electronic structure calculations is extensively discussed and clarified, with new interpretations and results, and, on this topic, this work may serve as a reference for future workers in the field.