Download or read book Functional Interpretations written by Justus Diller and published by World Scientific Publishing Company Incorporated. This book was released on 2019-11-08 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a detailed treatment of functional interpretations of arithmetic, analysis, and set theory. The subject goes back to G del's Dialectica interpretation of Heyting arithmetic which replaces nested quantification by higher type operations and thus reduces the consistency problem for arithmetic to the problem of computability of primitive recursive functionals of finite types. Regular functional interpretations, i.e. Dialectica and Diller Nahm interpretation as well as Kreisel's modified realization, together with their Troelstra-style hybrids, are applied to constructive as well as classical systems of arithmetic, analysis, and set theory. They yield relative consistency and conservativity results and closure under relevant rules of the theories in question as well as axiomatic characterizations of the functional translations. Prerequisites are: familiarity with classical and intuitionistic predicate logic, basics of computability theory, G del's incompleteness theorems.
Download or read book Theorems and Problems in Functional Analysis written by A. A. Kirillov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Even the simplest mathematical abstraction of the phenomena of reality the real line-can be regarded from different points of view by different mathematical disciplines. For example, the algebraic approach to the study of the real line involves describing its properties as a set to whose elements we can apply" operations," and obtaining an algebraic model of it on the basis of these properties, without regard for the topological properties. On the other hand, we can focus on the topology of the real line and construct a formal model of it by singling out its" continuity" as a basis for the model. Analysis regards the line, and the functions on it, in the unity of the whole system of their algebraic and topological properties, with the fundamental deductions about them obtained by using the interplay between the algebraic and topological structures. The same picture is observed at higher stages of abstraction. Algebra studies linear spaces, groups, rings, modules, and so on. Topology studies structures of a different kind on arbitrary sets, structures that give mathe matical meaning to the concepts of a limit, continuity, a neighborhood, and so on. Functional analysis takes up topological linear spaces, topological groups, normed rings, modules of representations of topological groups in topological linear spaces, and so on. Thus, the basic object of study in functional analysis consists of objects equipped with compatible algebraic and topological structures.
Download or read book Elementary Functional Analysis written by Georgi E. Shilov and published by Courier Corporation. This book was released on 2013-04-15 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory text covers basic structures of mathematical analysis (linear spaces, metric spaces, normed linear spaces, etc.), differential equations, orthogonal expansions, Fourier transforms, and more. Includes problems with hints and answers. Bibliography. 1974 edition.
Download or read book Nonlinear Functional Analysis written by Klaus Deimling and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical language and way of thinking, one which is no doubt familiar from elementary lectures in analysis that did not worry much about its connections with algebra and topology. Of course we shall use some elementary topological concepts, which may be new, but in fact only a few remarks here and there pertain to algebraic or differential topological concepts and methods.
Download or read book Functional Interpretations From The Dialectica Interpretation To Functional Interpretations Of Analysis And Set Theory written by Justus Diller and published by World Scientific. This book was released on 2019-11-18 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a detailed treatment of functional interpretations of arithmetic, analysis, and set theory. The subject goes back to Gödel's Dialectica interpretation of Heyting arithmetic which replaces nested quantification by higher type operations and thus reduces the consistency problem for arithmetic to the problem of computability of primitive recursive functionals of finite types. Regular functional interpretations, in particular the Dialectica interpretation and its generalization to finite types, the Diller-Nahm interpretation, are studied on Heyting as well as Peano arithmetic in finite types and extended to functional interpretations of constructive as well as classical systems of analysis and set theory. Kreisel's modified realization and Troelstra's hybrids of it are presented as interpretations of Heyting arithmetic and extended to constructive set theory, both in finite types. They serve as background for the construction of hybrids of the Diller-Nahm interpretation of Heyting arithmetic and constructive set theory, again in finite types. All these functional interpretations yield relative consistency results and closure under relevant rules of the theories in question as well as axiomatic characterizations of the functional translations.
Download or read book Lectures and Exercises on Functional Analysis written by Александр Яковлевич Хелемский and published by American Mathematical Soc.. This book was released on with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is based on courses taught by the author at Moscow State University. Compared to many other books on the subject, it is unique in that the exposition is based on extensive use of the language and elementary constructions of category theory. Among topics featured in the book are the theory of Banach and Hilbert tensor products, the theory of distributions and weak topologies, and Borel operator calculus. The book contains many examples illustrating the general theory presented, as well as multiple exercises that help the reader to learn the subject. It can be used as a textbook on selected topics of functional analysis and operator theory. Prerequisites include linear algebra, elements of real analysis, and elements of the theory of metric spaces.
Download or read book Functional Analysis written by George Bachman and published by Courier Corporation. This book was released on 2012-09-26 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text covers introduction to inner-product spaces, normed, metric spaces, and topological spaces; complete orthonormal sets, the Hahn-Banach Theorem and its consequences, and many other related subjects. 1966 edition.
Download or read book Functional Analysis written by R.E. Edwards and published by Courier Corporation. This book was released on 2012-10-25 with total page 802 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book contains an enormous amount of information — mathematical, bibliographical and historical — interwoven with some outstanding heuristic discussions." — Mathematical Reviews. In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the end of each chapter. Beginning with a chapter of preliminaries on set theory and topology, Dr. Edwards then presents detailed, in-depth discussions of vector spaces and topological vector spaces, the Hahn-Banach theorem (including applications to potential theory, approximation theory, game theory, and other fields) and fixed-point theorems. Subsequent chapters focus on topological duals of certain spaces: radon measures, distribution and linear partial differential equations, open mapping and closed graph theorems, boundedness principles, duality theory, the theory of compact operators and the Krein-Milman theorem and its applications to commutative harmonic analysis. Clearly and concisely written, Dr. Edwards's book offers rewarding reading to mathematicians and physicists with an interest in the important field of functional analysis. Because of the broad scope of its coverage, this volume will be especially valuable to the reader with a basic knowledge of functional analysis who wishes to learn about parts of the subject other than his own specialties. A comprehensive 32-page bibliography supplies a rich source of references to the basic literature.
Download or read book Functional Analysis written by Kosaku Yosida and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Essential Results of Functional Analysis written by Robert J. Zimmer and published by University of Chicago Press. This book was released on 1990-01-15 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional analysis is a broad mathematical area with strong connections to many domains within mathematics and physics. This book, based on a first-year graduate course taught by Robert J. Zimmer at the University of Chicago, is a complete, concise presentation of fundamental ideas and theorems of functional analysis. It introduces essential notions and results from many areas of mathematics to which functional analysis makes important contributions, and it demonstrates the unity of perspective and technique made possible by the functional analytic approach. Zimmer provides an introductory chapter summarizing measure theory and the elementary theory of Banach and Hilbert spaces, followed by a discussion of various examples of topological vector spaces, seminorms defining them, and natural classes of linear operators. He then presents basic results for a wide range of topics: convexity and fixed point theorems, compact operators, compact groups and their representations, spectral theory of bounded operators, ergodic theory, commutative C*-algebras, Fourier transforms, Sobolev embedding theorems, distributions, and elliptic differential operators. In treating all of these topics, Zimmer's emphasis is not on the development of all related machinery or on encyclopedic coverage but rather on the direct, complete presentation of central theorems and the structural framework and examples needed to understand them. Sets of exercises are included at the end of each chapter. For graduate students and researchers in mathematics who have mastered elementary analysis, this book is an entrée and reference to the full range of theory and applications in which functional analysis plays a part. For physics students and researchers interested in these topics, the lectures supply a thorough mathematical grounding.
Download or read book Real and Functional Analysis written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is meant as a text for a first-year graduate course in analysis. In a sense, it covers the same topics as elementary calculus but treats them in a manner suitable for people who will be using it in further mathematical investigations. The organization avoids long chains of logical interdependence, so that chapters are mostly independent. This allows a course to omit material from some chapters without compromising the exposition of material from later chapters.
Download or read book Functional Analysis written by Theo Bühler and published by American Mathematical Soc.. This book was released on 2018-08-08 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: It begins in Chapter 1 with an introduction to the necessary foundations, including the Arzelà–Ascoli theorem, elementary Hilbert space theory, and the Baire Category Theorem. Chapter 2 develops the three fundamental principles of functional analysis (uniform boundedness, open mapping theorem, Hahn–Banach theorem) and discusses reflexive spaces and the James space. Chapter 3 introduces the weak and weak topologies and includes the theorems of Banach–Alaoglu, Banach–Dieudonné, Eberlein–Šmulyan, Kre&ibreve;n–Milman, as well as an introduction to topological vector spaces and applications to ergodic theory. Chapter 4 is devoted to Fredholm theory. It includes an introduction to the dual operator and to compact operators, and it establishes the closed image theorem. Chapter 5 deals with the spectral theory of bounded linear operators. It introduces complex Banach and Hilbert spaces, the continuous functional calculus for self-adjoint and normal operators, the Gelfand spectrum, spectral measures, cyclic vectors, and the spectral theorem. Chapter 6 introduces unbounded operators and their duals. It establishes the closed image theorem in this setting and extends the functional calculus and spectral measure to unbounded self-adjoint operators on Hilbert spaces. Chapter 7 gives an introduction to strongly continuous semigroups and their infinitesimal generators. It includes foundational results about the dual semigroup and analytic semigroups, an exposition of measurable functions with values in a Banach space, and a discussion of solutions to the inhomogeneous equation and their regularity properties. The appendix establishes the equivalence of the Lemma of Zorn and the Axiom of Choice, and it contains a proof of Tychonoff's theorem. With 10 to 20 elaborate exercises at the end of each chapter, this book can be used as a text for a one-or-two-semester course on functional analysis for beginning graduate students. Prerequisites are first-year analysis and linear algebra, as well as some foundational material from the second-year courses on point set topology, complex analysis in one variable, and measure and integration.
Download or read book Functional Analysis Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Download or read book An Introduction to Hilbert Space written by N. Young and published by Cambridge University Press. This book was released on 1988-07-21 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.
Download or read book Introduction to Banach Spaces and Algebras written by Graham R. Allan and published by Oxford University Press. This book was released on 2011 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely graduate level text in an active field covering functional analysis, with an emphasis on Banach algebras.
Download or read book A First Course in Functional Analysis written by Orr Moshe Shalit and published by CRC Press. This book was released on 2017-03-16 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written as a textbook, A First Course in Functional Analysis is an introduction to basic functional analysis and operator theory, with an emphasis on Hilbert space methods. The aim of this book is to introduce the basic notions of functional analysis and operator theory without requiring the student to have taken a course in measure theory as a prerequisite. It is written and structured the way a course would be designed, with an emphasis on clarity and logical development alongside real applications in analysis. The background required for a student taking this course is minimal; basic linear algebra, calculus up to Riemann integration, and some acquaintance with topological and metric spaces.
Download or read book Beginning Functional Analysis written by Karen Saxe and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying approach of functional analysis is to view functions as points in abstract vector space and the differential and integral operators as linear transformations on these spaces. The author's goal is to present the basics of functional analysis in a way that makes them comprehensible to a student who has completed courses in linear algebra and real analysis, and to develop the topics in their historical contexts.