EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fully Implicit Orthogonal Reconstructed Discontinuous Galerkin for Fluid Dynamics with Phase Change

Download or read book Fully Implicit Orthogonal Reconstructed Discontinuous Galerkin for Fluid Dynamics with Phase Change written by and published by . This book was released on 2015 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new reconstructed Discontinuous Galerkin (rDG) method, based on orthogonal basis/test functions, is developed for fluid flows on unstructured meshes. Orthogonality of basis functions is essential for enabling robust and efficient fully-implicit Newton-Krylov based time integration. The method is designed for generic partial differential equations, including transient, hyperbolic, parabolic or elliptic operators, which are attributed to many multiphysics problems. We demonstrate the method's capabilities for solving compressible fluid-solid systems (in the low Mach number limit), with phase change (melting/solidification), as motivated by applications in Additive Manufacturing (AM). We focus on the method's accuracy (in both space and time), as well as robustness and solvability of the system of linear equations involved in the linearization steps of Newton-based methods. The performance of the developed method is investigated for highly-stiff problems with melting/solidification, emphasizing the advantages from tight coupling of mass, momentum and energy conservation equations, as well as orthogonality of basis functions, which leads to better conditioning of the underlying (approximate) Jacobian matrices, and rapid convergence of the Krylov-based linear solver.

Book International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019

Download or read book International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019 written by Vera Murgul and published by Springer Nature. This book was released on 2020-08-17 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to assist to improve energy efficiency in the industrial sector. The book offers case studies for industrial energy efficiency improvement and contains brief reports on cutting-edge research in all fields of the energy industry. This book, which is composed of select research proceedings of the EMMFT 2019 conference, covers such issues as: good quality energy use, energy generation technologies, materials used for energy generation, and storage technologies, as well as materials for water purification, petroleum engineering, and digital energy systems. The case studies discussed comprise the use of fossil fuel and non-fossil fuel energy resources, novel materials with advanced heat transport or heat resistance, and energy digitalization. Coverage extends to all theoretical and applied aspects of the field. This book is an ideal resource for scientists and energy analysts, industrial practitioners, engineers, researchers, and postgraduate students working in the field of management and technology for improving energy efficiency in the industry. Also, the book is of interest to researchers, engineers, and laboratory personnel in the fields of power systems and smart grids.

Book Discontinuous Galerkin Method

Download or read book Discontinuous Galerkin Method written by Vít Dolejší and published by Springer. This book was released on 2015-07-17 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.

Book A CLASS OF RECONSTRUCTED DISCONTINUOUS GALERKIN METHODS IN COMPUTATIONAL FLUID DYNAMICS

Download or read book A CLASS OF RECONSTRUCTED DISCONTINUOUS GALERKIN METHODS IN COMPUTATIONAL FLUID DYNAMICS written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness.

Book Simulation of Multispecies Gas Flows Using the Discontinuous Galerkin Method

Download or read book Simulation of Multispecies Gas Flows Using the Discontinuous Galerkin Method written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Truncation errors and computational cost are obstacles that still hinder large-scale applications of the Computational Fluid Dynamics method. The discontinuous Galerkin method is one of the high-order schemes utilized extensively in recent years, which is locally conservative, stable, and high-order accurate. Besides that, it can handle complex geometries and irregular meshes with hanging nodes. In this document, the nondimensional compressible Euler equations and Reynolds-Averaged Navier-Stokes equations are discretized by discontinuous Galerkin methods with a two-equations turbulence model on both structured and unstructured meshes. The traditional equation of state for an ideal gas model is substituted by a multispecies thermodynamics model in order to complete the governing equations. An approximate Riemann solver is used for computing the convective flux, and the diffusive flux is approximated with some internal penalty based schemes. The temporal discretization of the partial differential equations is either performed explicitly with the aid of Rung-Kutta methods or with semi-implicit methods. Inspired by the artificial viscosity diffusion based limiter for shock-capturing method, which has been extensively studied, a novel and robust technique based on the introduction of mass diffusion to the species governing equations to guarantee that the species mass fractions remain positive has been thoroughly investigated. This contact-surface-capturing method is conservative and a high order of accuracy can be maintained for the discontinuous Galerkin method. For each time step of the algorithm, any trouble cell is first caught by the contact-surface discontinuity detector. Then some amount of mass diffusions are added to the governing equations to change the gas mixtures and arrive at an equilibrium point satisfying some conditions. The species properties are reasonable without any oscillations. Computations are performed for many steady and unsteady flow problems. For general non-mixing fluid flows, the classical air-helium shock bubble interaction problem is the central test case for the high-order discontinuous Galerkin method with a mass diffusion based limiter chosen. The computed results are compared with experimental, exact, and empirical data to validate the fluid dynamic solver.

Book High order  hybridized  Discontinuous Galerkin Method for Geophysical Flows

Download or read book High order hybridized Discontinuous Galerkin Method for Geophysical Flows written by Shinhoo Kang and published by . This book was released on 2019 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: As computational research has grown, simulation has become a standard tool in many fields of academic and industrial areas. For example, computational fluid dynamics (CFD) tools in aerospace and research facilities are widely used to evaluate the aerodynamic performance of aircraft or wings. Weather forecasts are highly dependent on numerical weather prediction (NWP) model. However, it is still difficult to simulate the complex physical phenomena of a wide range of length and time scales with modern computational resources. In this study, we develop a robust, efficient and high-order accurate numerical methods and techniques to tackle the challenges. First, we use high-order spatial discretization using (hybridized) discontinuous Galerkin (DG) methods. The DG method combines the advantages of finite volume and finite element methods. As such, it is well-suited to problems with large gradients including shocks and with complex geometries, and large-scale simulations. However, DG typically has many degrees-of-freedoms. To mitigate the expense, we use hybridized DG (HDG) method that introduces new “trace unknowns” on the mesh skeleton (mortar interfaces) to eliminate the local “volume unknowns” with static condensation procedure and reduces globally coupled system when implicit time-stepping is required. Also, since the information between the elements is exchanged through the mesh skeleton, the mortar interfaces can be used as a glue to couple multi-phase regions, e.g., solid and fluid regions, or non-matching grids, e.g., a rotating mesh and a stationary mesh. That is the HDG method provides an efficient and flexible coupling environment compared to standard DG methods. Second, we develop an HDG-DG IMEX scheme for an efficient time integrating scheme. The idea is to divide the governing equations into stiff and nonstiff parts, implicitly treat the former with HDG methods, and explicitly treat the latter with DG methods. The HDG-DG IMEX scheme facilitates high-order temporal and spatial solutions, avoiding too small a time step. Numerical results show that the HDG-DG IMEX scheme is comparable to an explicit Runge-Kutta DG scheme in terms of accuracy while allowing for much larger timestep sizes. We also numerically observe that IMEX HDG-DG scheme can be used as a tool to suppress the high-frequency modes such as acoustic waves or fast gravity waves in atmospheric or ocean models. In short, IMEX HDG-DG methods are attractive for applications in which a fast and stable solution is important while permitting inaccurate processing of the fast modes. Third, we also develop an EXPONENTIAL DG scheme for an efficient time integrators. Similar to the IMEX method, the governing equations are separated into linear and nonlinear parts, then the two parts are spatially discretized with DG methods. Next, we analytically integrate the linear term and approximate the nonlinear term with respect to time. This method accurately handles the fast wave modes in the linear operator. To efficiently evaluate a matrix exponential, we employ the cutting-edge adaptive Krylov subspace method. Finally, we develop a sliding-mesh interface by combining nonconforming treatment and the arbitrary Lagrangian-Eulerian (ALE) scheme for simulating rotating flows, which are important to estimate the characteristics of a rotating wind turbine or understanding vortical structures shown in atmospheric or astronomical phenomena. To integrate the rotating motion of the domain, we use the ALE formulation to map the governing equation to the stationary reference domain and introduce mortar interfaces between the stationary mesh and the rotating mesh. The mortar structure on the sliding interface changes dynamically as the mesh rotates

Book Fundamentals of Numerical Reservoir Simulation

Download or read book Fundamentals of Numerical Reservoir Simulation written by D.W. Peaceman and published by Elsevier. This book was released on 2000-04-01 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of numerical reservoir simulation with high-speed electronic computers has gained wide acceptance throughout the petroleum industry for making engineering studies of a wide variety of oil and gas reservoirs throughout the world. These reservoir simulators have been designed for use by reservoir engineers who possess little or no background in the numerical mathematics upon which they are based. In spite of the efforts to improve numerical methods to make reservoir simulators as reliable, efficient, and automatic as possible, the user of a simulator is faced with a myriad of decisions that have nothing to do with the problem to be solved. This book combines a review of some basic reservoir mechanics with the derivation of the differential equations that reservoir simulators are designed to solve.

Book Numerical Methods for Fluid Dynamics

Download or read book Numerical Methods for Fluid Dynamics written by Dale R. Durran and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean

Book Computational Methods for Multiphase Flows in Porous Media

Download or read book Computational Methods for Multiphase Flows in Porous Media written by Zhangxin Chen and published by SIAM. This book was released on 2006-04-01 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.

Book Recent Developments in Theoretical and Experimental Fluid Mechanics

Download or read book Recent Developments in Theoretical and Experimental Fluid Mechanics written by U. Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dedicated to Prof. Dr.-Ing. J. Zierep

Book Adaptive High order Methods in Computational Fluid Dynamics

Download or read book Adaptive High order Methods in Computational Fluid Dynamics written by Z. J. Wang and published by World Scientific. This book was released on 2011 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). It covers several widely used, and still intensively researched methods, including the discontinuous Galerkin, residual distribution, finite volume, differential quadrature, spectral volume, spectral difference, PNPM, and correction procedure via reconstruction methods. The main focus is applications in aerospace engineering, but the book should also be useful in many other engineering disciplines including mechanical, chemical and electrical engineering. Since many of these methods are still evolving, the book will be an excellent reference for researchers and graduate students to gain an understanding of the state of the art and remaining challenges in high-order CFD methods.

Book Nodal Discontinuous Galerkin Methods

Download or read book Nodal Discontinuous Galerkin Methods written by Jan S. Hesthaven and published by Springer Science & Business Media. This book was released on 2007-12-18 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.

Book Discontinuous Galerkin Methods

Download or read book Discontinuous Galerkin Methods written by Bernardo Cockburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Book Efficient High Order Discretizations for Computational Fluid Dynamics

Download or read book Efficient High Order Discretizations for Computational Fluid Dynamics written by Martin Kronbichler and published by Springer Nature. This book was released on 2021-01-04 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.

Book Introduction to Geophysical Fluid Dynamics

Download or read book Introduction to Geophysical Fluid Dynamics written by Benoit Cushman-Roisin and published by Academic Press. This book was released on 2011-08-26 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Geophysical Fluid Dynamics provides an introductory-level exploration of geophysical fluid dynamics (GFD), the principles governing air and water flows on large terrestrial scales. Physical principles are illustrated with the aid of the simplest existing models, and the computer methods are shown in juxtaposition with the equations to which they apply. It explores contemporary topics of climate dynamics and equatorial dynamics, including the Greenhouse Effect, global warming, and the El Nino Southern Oscillation. - Combines both physical and numerical aspects of geophysical fluid dynamics into a single affordable volume - Explores contemporary topics such as the Greenhouse Effect, global warming and the El Nino Southern Oscillation - Biographical and historical notes at the ends of chapters trace the intellectual development of the field - Recipient of the 2010 Wernaers Prize, awarded each year by the National Fund for Scientific Research of Belgium (FNR-FNRS)

Book An Introduction to Reservoir Simulation Using MATLAB GNU Octave

Download or read book An Introduction to Reservoir Simulation Using MATLAB GNU Octave written by Knut-Andreas Lie and published by Cambridge University Press. This book was released on 2019-08-08 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.