EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fuel Economy Predictions for Heavy   duty Vehicles and Quasi   dimensional DI Diesel Engine Numerical Modeling

Download or read book Fuel Economy Predictions for Heavy duty Vehicles and Quasi dimensional DI Diesel Engine Numerical Modeling written by Murat Ates and published by . This book was released on 2016 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: A research team developed the University of Texas Fuel Economy Model to estimate the fuel consumption of both light-duty and heavy-duty vehicles operated on Texas roads. One of the objectives of the model was to be as flexible as possible in order to be capable of simulating a variety of vehicles, payloads, and traffic conditions. For heavy-duty vehicles, there are no prescribed driving cycles, there are no coastdown coefficients available from the EPA, and we relied on experimental brake specific fuel consumption maps for a few heavy-duty diesel engines. Heavy-duty vehicle drive cycles highly depend upon the vehicle load, the grade of the road, the engine size, and the traffic conditions. In order to capture real driving conditions 54 drive cycles with three different Class 8 trucks, three weight configurations, three traffic congestion levels, and two drivers are collected. Drive cycles obtained in this research include road grade and vehicle speed data with time. Due to the lack of data from EPA for calculating the road load force for heavy-duty vehicles, coastdown tests were performed. To generate generic fuel maps for the fuel economy model, a direct injection quasi-dimensional diesel engine model was developed based on in-cylinder images available in the literature. Sandia National Laboratory researchers obtained various images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation via imaging technologies. Dec combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was proposed to capture diesel combustion in its life span. A full-cycle quasi-dimensional direct injection diesel engine model was developed that represents the physical models, utilizing the conceptual model developed from imaging experiments and available experiment-based spray models, of the in-cylinder processes. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations. A full cycle simulation is necessary in order to capture the initial conditions of the closed section of the cycle and predict the brake specific fuel consumption accurately.

Book Modelling Diesel Combustion

Download or read book Modelling Diesel Combustion written by P. A. Lakshminarayanan and published by Springer Nature. This book was released on 2022-01-21 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively discusses diesel combustion phenomena like ignition delay, fuel-air mixing, rate of heat release, and emissions of smoke, particulate and nitric oxide. It enables quantitative evaluation of these important phenomena and parameters. Most importantly, it attempts to model them with constants that are independent of engine types and hence they could be applied by the engineers and researchers for a general engine. This book emphasizes the importance of the spray at the wall in precisely describing the heat release and emissions for most of the engines on and off-road. It gives models for heat release and emissions. Every model is thoroughly validated by detailed experiments using a broad range of engines. The book describes an elegant quasi-one-dimensional model for heat release in diesel engines with single as well as multiple injections. The book describes how the two aspects, namely, fuel injection rate and the diameter of the combustion bowl in the piston, have enabled meeting advanced emission, noise, and performance standards. The book also discusses the topics of computational fluid dynamics encompassing RANS and LES models of turbulence. Given the contents, this book will be useful for students, researchers and professionals working in the area of vehicle engineering and engine technology. This book will also be a good professional book for practising engineers in the field of combustion engines and automotive engineering.

Book A Quasi dimensional Charge Motion and Turbulence Model for Combustion and Emissions Prediction in Diesel Engines with a fully Variable Valve Train

Download or read book A Quasi dimensional Charge Motion and Turbulence Model for Combustion and Emissions Prediction in Diesel Engines with a fully Variable Valve Train written by Qirui Yang and published by Springer Nature. This book was released on 2021-10-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Qirui Yang develops a model chain for the simulation of combustion and emissions of diesel engine with fully variable valve train (VVT) based on extensive 3D-CFD simulations, and experimental measurements on the engine test bench. The focus of the work is the development of a quasi-dimensional (QDM) flow model, which sets up a series of sub-models to describe phenomenologically the swirl, squish and axial charge motions as well as the shear-related turbulence production and dissipation. The QDM flow model is coupled with a QDM combustion model and a nitrogen oxides (NOx) / soot emission model. With the established model chain, VVT operating strategies of diesel engine can be developed and optimized as part of the simulation for specific engine performance parameters and the lowest NOx and soot emissions.

Book Fuel Economy Modeling of Light duty and Heavy duty Vehicles  and Coastdown Study

Download or read book Fuel Economy Modeling of Light duty and Heavy duty Vehicles and Coastdown Study written by Murat Ates and published by . This book was released on 2009 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of a Fuel Economy Model for Light-Duty and Heavy-Duty Vehicles is part of the Texas Department of Transportation's "Estimating Texas Motor Vehicle Operating Costs" project. The literature review for models that could be used to predict the fuel economy of light-duty and heavy-duty vehicles consisted of Prof. Ronald D. Matthews' decades-long examination of the experimental techniques used to determine compliance with emissions and fuel economy requirements for on-road vehicles. For light-duty vehicles, advantage can be taken of the modeling data provided by the United States Environmental Protection Agency (EPA) for adjusting chassis dynamometers to allow accurate determination of emissions and fuel economy so that compliance with emissions standards and Corporate Average Fuel Economy (CAFE) regulations can be assessed. Initially, EPA provided vehicle-specific data that were relevant to a physics-based model of the forces at the tire-road interface. Due to some limitations of these model parameters, EPA eventually went to a coarse, empirical, vehicle-specific model for this force as a function of vehicle speed. However, this coarse model was, in fact, too coarse. EPA now provides three vehicle-specific coefficients obtained from vehicle coastdown data. These coefficients can be related back to the original physics-based model of the forces at the tire-road interface, but not in a manner that allows the original modeling parameters to be extracted from the coastdown coefficients. Nevertheless, as long as the operation of a light-duty vehicle does not involve extreme acceleration or deceleration transients, the coefficients available from the EPA can be used to accurately predict fuel economy. Manufacturers of heavy-duty vehicles are not required to meet any sort of CAFE standards, and the engines used in heavy-duty vehicles, rather than the vehicles themselves, are tested (using an engine dynamometer) to determine compliance with emissions standards. Therefore, EPA provides no data that could be useful for predicting the fuel economy of heavy-duty vehicles. Therefore, it will be necessary to perform the coastdown tests ourselves, and use these tests to develop vehicle-specific coefficients for the force at the tire-road interface. Given these coefficients, the fuel economy of a heavy-duty vehicle can be calculated for any driving schedule. The heavy-duty vehicle model will be limited to pre-2007 calendar year heavy-duty vehicles due to the adverse effects of emissions components that were necessary to comply with emissions standards that went into effect January 2007.

Book Technologies and Approaches to Reducing the Fuel Consumption of Medium  and Heavy Duty Vehicles

Download or read book Technologies and Approaches to Reducing the Fuel Consumption of Medium and Heavy Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2010-07-30 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.

Book Modelling Diesel Combustion

Download or read book Modelling Diesel Combustion written by P. A. Lakshminarayanan and published by Springer Science & Business Media. This book was released on 2010-03-03 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.

Book International Automotive Fuel Economy Research Conference  First  Proceedings

Download or read book International Automotive Fuel Economy Research Conference First Proceedings written by and published by . This book was released on 1981 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Assessment of Fuel Economy Technologies for Light Duty Vehicles

Download or read book Assessment of Fuel Economy Technologies for Light Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2011-07-03 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Book Technical Literature Abstracts

Download or read book Technical Literature Abstracts written by Society of Automotive Engineers and published by . This book was released on 2000 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Journal of Engineering for Gas Turbines and Power

Download or read book Journal of Engineering for Gas Turbines and Power written by and published by . This book was released on 2006 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Annual Index abstracts of SAE Technical Papers 2004

Download or read book Annual Index abstracts of SAE Technical Papers 2004 written by and published by . This book was released on 2005 with total page 962 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of a Quasi dimensional Diesel Engine Simulation for Energy and Availability Analysis

Download or read book Development of a Quasi dimensional Diesel Engine Simulation for Energy and Availability Analysis written by Qiong Li and published by . This book was released on 1992 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: A quasi-dimensional multi-zone combustion model and a radiation heat transfer model are developed for the study of turbocharged diesel engine performance and energy and availability balance. The quasi-dimensional multi-zone combustion model is based on the air and fuel mixing process with a temperature and concentration dependent fuel burning rate. In order to study the combustion process, several submodels, such as the fuel evaporation and air entrainment, are developed based on critical phenomena. The model shows that predicted cylinder pressure and heat release shape are in good agreement with experimental data under rated speed and load conditions. In the radiation heat transfer model, a modified two flux model is used to analyze penetration of radiation through translucent materials. The model, in addition to transient heat conduction through combustion chamber walls, is especially important to the design of ceramic-insulated engines. Based on the combustion and radiation heat transfer models, the energy is balanced by both the first law and the second law of thermodynamics. The results provide insight into the sources of availability destruction and their relative contributions. In particular, combustion loss due to the entropy generated when reactants are transformed into products can account for over 20% of the fuel availability, and less than 60% of the energy contained in the exhaust gases can be recovered using ideal thermodynamic devices. It is also shown that the model produces expected trends under different engine operating conditions.

Book Annual Index abstracts of SAE Technical Papers

Download or read book Annual Index abstracts of SAE Technical Papers written by and published by . This book was released on 2006 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fuel Economy Predictions Using Engine Performance Models

Download or read book Fuel Economy Predictions Using Engine Performance Models written by and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Heavy Medium Duty Fuel Consumption Based on Drive Cycle Properties

Download or read book Modeling Heavy Medium Duty Fuel Consumption Based on Drive Cycle Properties written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

Book Internal Combustion Engines Improving Performance  Fuel Economy and Emissions

Download or read book Internal Combustion Engines Improving Performance Fuel Economy and Emissions written by Federico Millo and published by Mdpi AG. This book was released on 2020-10-02 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue, consisting of 14 papers, presents the latest findings concerning both numerical and experimental investigations. Their aim is to achieve a reduction in pollutant emissions, as well as an improvement in fuel economy and performance, for internal combustion engines. This will provide readers with a comprehensive, unbiased, and scientifically sound overview of the most recent research and technological developments in this field. More specific topics include: 3D CFD detailed analysis of the fuel injection, combustion and exhaust aftertreatments processes, 1D and 0D, semi-empirical, neural network-based control-oriented models, experimental analysis and the optimization of both conventional and innovative combustion processes.