EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Frontiers and Challenges in Warm Dense Matter

Download or read book Frontiers and Challenges in Warm Dense Matter written by Frank Graziani and published by Springer Science & Business. This book was released on 2014-04-28 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.

Book Proceedings of the International Conference on Atomic  Molecular  Optical   Nano Physics with Applications

Download or read book Proceedings of the International Conference on Atomic Molecular Optical Nano Physics with Applications written by Vinod Singh and published by Springer Nature. This book was released on 2022-03-14 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the proceedings of the International Conference on Atomic, Molecular, Optical and Nano-Physics with Applications (CAMNP 2019), organized by the Department of Applied Physics, Delhi Technological University, New Delhi, India. It presents experimental and theoretical studies of atoms, ions, molecules and nanostructures both at the fundamental level and on the application side using advanced technology. It highlights how modern tools of high-field and ultra-fast physics are no longer merely used to observe nature but can be used to reshape and redirect atoms, molecules, particles or radiation. It brings together leading researchers and professionals on the field to present and discuss the latest finding in the following areas, but not limited to: Atomic and Molecular Structure, Collision Processes, Data Production and Applications Spectroscopy of Solar and Stellar Plasma Intense Field, Short Pulse Laser and Atto-Second Physics Laser Technology, Quantum Optics and applications Bose Einstein condensation Nanomaterials and Nanoscience Nanobiotechnolgy and Nanophotonics Nano and Micro-Electronics Computational Condensed Matter Physics

Book Building Bridges  Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations

Download or read book Building Bridges Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations written by Gabriel R. Barrenechea and published by Springer. This book was released on 2016-10-03 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains contributed survey papers from the main speakers at the LMS/EPSRC Symposium “Building bridges: connections and challenges in modern approaches to numerical partial differential equations”. This meeting took place in July 8-16, 2014, and its main purpose was to gather specialists in emerging areas of numerical PDEs, and explore the connections between the different approaches. The type of contributions ranges from the theoretical foundations of these new techniques, to the applications of them, to new general frameworks and unified approaches that can cover one, or more than one, of these emerging techniques.

Book Concepts of Mathematical Physics in Chemistry  A Tribute to Frank E  Harris   Part A

Download or read book Concepts of Mathematical Physics in Chemistry A Tribute to Frank E Harris Part A written by and published by Academic Press. This book was released on 2015-08-06 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a series of articles concerning current important topics in quantum chemistry. Presents surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology Features detailed reviews written by leading international researchers

Book Machine Learning in Molecular Sciences

Download or read book Machine Learning in Molecular Sciences written by Chen Qu and published by Springer Nature. This book was released on 2023-11-02 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning and artificial intelligence have propelled research across various molecular science disciplines thanks to the rapid progress in computing hardware, algorithms, and data accumulation. This book presents recent machine learning applications in the broad research field of molecular sciences. Written by an international group of renowned experts, this edited volume covers both the machine learning methodologies and state-of-the-art machine learning applications in a wide range of topics in molecular sciences, from electronic structure theory to nuclear dynamics of small molecules, to the design and synthesis of large organic and biological molecules. This book is a valuable resource for researchers and students interested in applying machine learning in the research of molecular sciences.

Book Introduction to Numerical Methods for Variational Problems

Download or read book Introduction to Numerical Methods for Variational Problems written by Hans Petter Langtangen and published by Springer Nature. This book was released on 2019-09-26 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook teaches finite element methods from a computational point of view. It focuses on how to develop flexible computer programs with Python, a programming language in which a combination of symbolic and numerical tools is used to achieve an explicit and practical derivation of finite element algorithms. The finite element library FEniCS is used throughout the book, but the content is provided in sufficient detail to ensure that students with less mathematical background or mixed programming-language experience will equally benefit. All program examples are available on the Internet.

Book Frontiers of Quantum Chemistry

Download or read book Frontiers of Quantum Chemistry written by Marek J. Wójcik and published by Springer. This book was released on 2017-11-06 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to convey to the worldwide scientific community the rapid and enthusiastic progress of state-of-the-art quantum chemistry. Quantum chemistry continues to grow with remarkable success particularly due to rapid progress in supercomputers. The usefulness of quantum chemistry is almost limitless. Its application covers not only physical chemistry but also organic and inorganic chemistry, physics, and life sciences. This book deals with all of these topics. Frontiers of Quantum Chemistry is closely related to the symposium of the same name held at Kwansei Gakuin University at Nishinomiya, Japan, in November 2015. The book's contributors, however, include not only invited speakers at the symposium but also many other distinguished scientists from wide areas of quantum chemistry around the world.

Book Shock Phenomena in Granular and Porous Materials

Download or read book Shock Phenomena in Granular and Porous Materials written by Tracy J. Vogler and published by Springer Nature. This book was released on 2019-09-04 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Granular forms of common materials such as metals and ceramics, sands and soils, porous energetic materials (explosives, reactive mixtures), and foams exhibit interesting behaviors due to their heterogeneity and critical length scale, typically commensurate with the grain or pore size. Under extreme conditions of impact, granular and porous materials display highly localized phenomena such as fracture, inelastic deformation, and the closure of voids, which in turn strongly influence the bulk response. Due to the complex nature of these interactions and the short time scales involved, computational methods have proven to be powerful tools to investigate these phenomena. Thus, the coupled use of experiment, theory, and simulation is critical to advancing our understanding of shock processes in initially porous and granular materials. This is a comprehensive volume on granular and porous materials for researchers working in the area of shock and impact physics. The book is divided into three sections, where the first presents the fundamentals of shock physics as it pertains to the equation of state, compaction, and strength properties of porous materials. Building on these fundamentals, the next section examines several applications where dynamic processes involving initially porous materials are prevalent, focusing on the areas of penetration, planetary impact, and reactive munitions. The final section provides a look at emerging areas in the field, where the expansion of experimental and computational capabilities are opening the door for new opportunities in the areas of advanced light sources, molecular dynamics modeling, and additively manufactured porous structures. By intermixing experiment, theory, and simulation throughout, this book serves as an excellent, up-to-date desk reference for those in the field of shock compression science of porous and granular materials.

Book Finite Difference Computing with Exponential Decay Models

Download or read book Finite Difference Computing with Exponential Decay Models written by Hans Petter Langtangen and published by Springer. This book was released on 2016-06-10 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular.

Book A Primer on Scientific Programming with Python

Download or read book A Primer on Scientific Programming with Python written by Hans Petter Langtangen and published by Springer. This book was released on 2016-07-28 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015

Book Recent Trends in Computational Engineering   CE2014

Download or read book Recent Trends in Computational Engineering CE2014 written by Miriam Mehl and published by Springer. This book was released on 2015-10-12 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected papers from the 3rd International Workshop on Computational Engineering held in Stuttgart from October 6 to 10, 2014, bringing together innovative contributions from related fields with computer science and mathematics as an important technical basis among others. The workshop discussed the state of the art and the further evolution of numerical techniques for simulation in engineering and science. We focus on current trends in numerical simulation in science and engineering, new requirements arising from rapidly increasing parallelism in computer architectures, and novel mathematical approaches. Accordingly, the chapters of the book particularly focus on parallel algorithms and performance optimization, coupled systems, and complex applications and optimization.

Book Finite Difference Computing with PDEs

Download or read book Finite Difference Computing with PDEs written by Hans Petter Langtangen and published by Springer. This book was released on 2017-06-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Book Programming for Computations   Python

Download or read book Programming for Computations Python written by Svein Linge and published by Springer. This book was released on 2016-07-25 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Book Programming for Computations   MATLAB Octave

Download or read book Programming for Computations MATLAB Octave written by Svein Linge and published by Springer. This book was released on 2016-08-01 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Book The Physics of Laser Plasmas and Applications   Volume 1

Download or read book The Physics of Laser Plasmas and Applications Volume 1 written by Hideaki Takabe and published by Springer Nature. This book was released on 2020-08-28 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series of books discusses the physics of laser and matter interaction, fluid dynamics of high-temperature and high-density compressible plasma, and kinetic phenomena and particle dynamics in laser-produced plasma. The book (Vol.1) gives the physics of intense-laser absorption in matter and/or plasma in non-relativistic and relativistic laser-intensity regime. In many cases, it is explained with clear images of physics so that an intuitive understanding of individual physics is possible for non-specialists. For intense-laser of 1013-16 W/cm2, the laser energy is mainly absorbed via collisional process, where the oscillation energy is converted to thermal energy by non-adiabatic Coulomb collision with the ions. Collisionless interactions with the collective modes in plasma are also described. The main topics are the interaction of ultra-intense laser and plasma for the intensity near and over 1018W/cm2. In such regime, relativistic dynamics become essential. A new physics appears due to the relativistic effects, such as mass correction, relativistic nonlinear force, chaos physics of particle motions, and so on. The book provides clearly the theoretical base for challenging the laser-plasma interaction physics in the wide range of power lasers. It is suitable as a textbook for upper-undergraduate and graduate students as well as for readers who want to understand the whole physics structure about what happen when an intense-laser irradiates any materials including solids, gas etc. Explaining the physics intuitively without complicated mathematics, it is also a valuable resource for engineering students and researchers as well as for self-study.

Book Exercises in Numerical Linear Algebra and Matrix Factorizations

Download or read book Exercises in Numerical Linear Algebra and Matrix Factorizations written by Tom Lyche and published by Springer Nature. This book was released on 2020-11-02 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: To put the world of linear algebra to advanced use, it is not enough to merely understand the theory; there is a significant gap between the theory of linear algebra and its myriad expressions in nearly every computational domain. To bridge this gap, it is essential to process the theory by solving many exercises, thus obtaining a firmer grasp of its diverse applications. Similarly, from a theoretical perspective, diving into the literature on advanced linear algebra often reveals more and more topics that are deferred to exercises instead of being treated in the main text. As exercises grow more complex and numerous, it becomes increasingly important to provide supporting material and guidelines on how to solve them, supporting students’ learning process. This book provides precisely this type of supporting material for the textbook “Numerical Linear Algebra and Matrix Factorizations,” published as Vol. 22 of Springer’s Texts in Computational Science and Engineering series. Instead of omitting details or merely providing rough outlines, this book offers detailed proofs, and connects the solutions to the corresponding results in the textbook. For the algorithmic exercises the utmost level of detail is provided in the form of MATLAB implementations. Both the textbook and solutions are self-contained. This book and the textbook are of similar length, demonstrating that solutions should not be considered a minor aspect when learning at advanced levels.

Book Extraction of Quantifiable Information from Complex Systems

Download or read book Extraction of Quantifiable Information from Complex Systems written by Stephan Dahlke and published by Springer. This book was released on 2014-11-13 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: In April 2007, the Deutsche Forschungsgemeinschaft (DFG) approved the Priority Program 1324 “Mathematical Methods for Extracting Quantifiable Information from Complex Systems.” This volume presents a comprehensive overview of the most important results obtained over the course of the program. Mathematical models of complex systems provide the foundation for further technological developments in science, engineering and computational finance. Motivated by the trend toward steadily increasing computer power, ever more realistic models have been developed in recent years. These models have also become increasingly complex, and their numerical treatment poses serious challenges. Recent developments in mathematics suggest that, in the long run, much more powerful numerical solution strategies could be derived if the interconnections between the different fields of research were systematically exploited at a conceptual level. Accordingly, a deeper understanding of the mathematical foundations as well as the development of new and efficient numerical algorithms were among the main goals of this Priority Program. The treatment of high-dimensional systems is clearly one of the most challenging tasks in applied mathematics today. Since the problem of high-dimensionality appears in many fields of application, the above-mentioned synergy and cross-fertilization effects were expected to make a great impact. To be truly successful, the following issues had to be kept in mind: theoretical research and practical applications had to be developed hand in hand; moreover, it has proven necessary to combine different fields of mathematics, such as numerical analysis and computational stochastics. To keep the whole program sufficiently focused, we concentrated on specific but related fields of application that share common characteristics and as such, they allowed us to use closely related approaches.