EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Frequency Domain Models

    Book Details:
  • Author :
  • Publisher : DIANE Publishing
  • Release :
  • ISBN : 9781422318041
  • Pages : 22 pages

Download or read book Frequency Domain Models written by and published by DIANE Publishing. This book was released on with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book System Identification

    Book Details:
  • Author : Rik Pintelon
  • Publisher : John Wiley & Sons
  • Release : 2004-04-05
  • ISBN : 0471660957
  • Pages : 644 pages

Download or read book System Identification written by Rik Pintelon and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.

Book Frequency domain Characterization of Power Distribution Networks

Download or read book Frequency domain Characterization of Power Distribution Networks written by Dr. Istvan Novak and published by Artech House Publishers. This book was released on 2007 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power distribution networks (PDNs) are key components in today's high-performance electronic circuitry. They ensure that circuits have a constant, stable supply of power. The complexities of designing PDNs have been dramatically reduced by frequency-domain analysis. This book examines step-by-step how electrical engineers can use frequency-domain techniques to accurately simulate, measure, and model PDNs. It guides engineers through the ins and outs of these techniques to ensure they develop the right PDN for any type of circuit. Circuit engineers gain valuable insight from the book's best practices for measuring, simulating, and modeling. Practical examples illustrate every phase in PDN development from material characterization and component design to modeling the entire network.

Book Numerical Modelling of Wave Energy Converters

Download or read book Numerical Modelling of Wave Energy Converters written by Matt Folley and published by Academic Press. This book was released on 2016-06-14 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques. The authors provide clear details on the subject and guidance on its use for WEC design, covering topics such as boundary element methods, frequency domain models, spectral domain models, time domain models, non linear potential flow models, CFD models, semi analytical models, phase resolving wave propagation models, phase averaging wave propagation models, parametric design and control optimization, mean annual energy yield, hydrodynamic loads assessment, and environmental impact assessment. Each chapter starts by defining the fundamental principles underlying the numerical modelling technique and finishes with a discussion of the technique's limitations and a summary of the main points in the chapter. The contents of the chapters are not limited to a description of the mathematics, but also include details and discussion of the current available tools, examples available in the literature, and verification, validation, and computational requirements. In this way, the key points of each modelling technique can be identified without having to get deeply involved in the mathematical representation that is at the core of each chapter. The book is separated into four parts. The first two parts deal with modelling single wave energy converters; the third part considers the modelling of arrays; and the final part looks at the application of the different modelling techniques to the four most common uses of numerical models. It is ideal for graduate engineers and scientists interested in numerical modelling of wave energy converters, and decision-makers who must review different modelling techniques and assess their suitability and output. - Consolidates in one volume information and techniques for the numerical modelling of wave energy converters and converter arrays, which has, up until now, been spread around multiple academic journals and conference proceedings making it difficult to access - Presents a comparative review of the different numerical modelling techniques applied to wave energy converters, discussing their limitations, current available tools, examples, and verification, validation, and computational requirements - Includes practical examples and simulations available for download at the book's companion website - Identifies key points of each modelling technique without getting deeply involved in the mathematical representation

Book Power System Transients

Download or read book Power System Transients written by Juan A. Martinez-Velasco and published by CRC Press. This book was released on 2017-12-19 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the powerful numerical techniques and graphical user interfaces available in present software tools for power system transients, a lack of reliable tests and conversion procedures generally makes determination of parameters the most challenging part of creating a model. Illustrates Parameter Determination for Real-World Applications Geared toward both students and professionals with at least some basic knowledge of electromagnetic transient analysis, Power System Transients: Parameter Determination summarizes current procedures and techniques for the determination of transient parameters for six basic power components: overhead line, insulated cable, transformer, synchronous machine, surge arrester, and circuit breaker. An expansion on papers published in the IEEE Transactions on Power Delivery, this text helps those using transient simulation tools (e.g., EMTP-like tools) to select the optimal determination method for their particular model, and it addresses commonly encountered problems, including: Lack of information Testing setups and measurements that are not recognized in international standards Insufficient studies to validate models, mainly those used in high-frequency transients Current built-in models that do not cover all requirements Illustrated with case studies, this book provides modeling guidelines for the selection of adequate representations for main components. It discusses how to collect the information needed to obtain model parameters and also reviews procedures for deriving them. Appendices summarize updated techniques for identifying linear systems from frequency responses and review capabilities and limitations of simulation tools. Emphasizing standards, this book is a clear and concise presentation of key aspects in creating an adequate and reliable transient model.

Book Frequency domain Models for Nonlinear Finite Depth Water Wave Propagation

Download or read book Frequency domain Models for Nonlinear Finite Depth Water Wave Propagation written by James M. Kaihatu and published by . This book was released on 1994 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Frequency Domain Analysis and Design of Distributed Control Systems

Download or read book Frequency Domain Analysis and Design of Distributed Control Systems written by Yu-Ping Tian and published by John Wiley & Sons. This book was released on 2012-08-24 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified frequency-domain method for the analysis of distributed control systems. The following important topics are discussed by using the proposed frequency-domain method: (1) Scalable stability criteria of networks of distributed control systems; (2) Effect of heterogeneous delays on the stability of a network of distributed control system; (3) Stability of Internet congestion control algorithms; and (4) Consensus in multi-agent systems. This book is ideal for graduate students in control, networking and robotics, as well as researchers in the fields of control theory and networking who are interested in learning and applying distributed control algorithms or frequency-domain analysis methods.

Book Frequency domain Methods for Nonlinear Analysis

Download or read book Frequency domain Methods for Nonlinear Analysis written by Gennadi? Alekseevich Leonov and published by World Scientific. This book was released on 1996 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the investigation of global attractors of nonlinear dynamical systems. The exposition proceeds from the simplest attractor of a single equilibrium to more complicated ones, i.e. to finite, denumerable and continuum equilibria sets; and further, to cycles, homoclinic and heteroclinic orbits; and finally, to strange attractors consisting of irregular unstable trajectories. On the complicated equilibria sets, the methods of Lyapunov stability theory are transferred. They are combined with stability techniques specially elaborated for such sets. The results are formulated as frequency-domain criteria. The methods connected with the theorems of existence of cycles and homoclinic orbits are developed. The estimates of Hausdorff dimensions of attractors are presented.

Book Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion

Download or read book Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion written by Xingjian Jing and published by Springer. This book was released on 2015-02-17 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain. The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis and design method. Based on the parametric characteristic approach, nonlinear influence in the frequency domain can be investigated with a novel insight, i.e., alternating series, which is followed by some application results in vibration control. Magnitude bounds of frequency response functions of nonlinear systems can also be studied with a parametric characteristic approach, which result in novel parametric convergence criteria for any given parametric nonlinear model whose input-output relationship allows a convergent Volterra series expansion. This book targets those readers who are working in the areas related to nonlinear analysis and design, nonlinear signal processing, nonlinear system identification, nonlinear vibration control, and so on. It particularly serves as a good reference for those who are studying frequency domain methods for nonlinear systems.

Book Electromagnetic and Photonic Simulation for the Beginner  Finite Difference Frequency Domain in MATLAB

Download or read book Electromagnetic and Photonic Simulation for the Beginner Finite Difference Frequency Domain in MATLAB written by Raymond C. Rumpf and published by Artech House. This book was released on 2022-01-31 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.

Book Fourier Methods in Imaging

Download or read book Fourier Methods in Imaging written by Roger L. Easton Jr. and published by John Wiley & Sons. This book was released on 2010-11-18 with total page 1005 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier Methods in Imaging introduces the mathematical tools for modeling linear imaging systems to predict the action of the system or for solving for the input. The chapters are grouped into five sections, the first introduces the imaging “tasks” (direct, inverse, and system analysis), the basic concepts of linear algebra for vectors and functions, including complex-valued vectors, and inner products of vectors and functions. The second section defines "special" functions, mathematical operations, and transformations that are useful for describing imaging systems. Among these are the Fourier transforms of 1-D and 2-D function, and the Hankel and Radon transforms. This section also considers approximations of the Fourier transform. The third and fourth sections examine the discrete Fourier transform and the description of imaging systems as linear "filters", including the inverse, matched, Wiener and Wiener-Helstrom filters. The final section examines applications of linear system models to optical imaging systems, including holography. Provides a unified mathematical description of imaging systems. Develops a consistent mathematical formalism for characterizing imaging systems. Helps the reader develop an intuitive grasp of the most common mathematical methods, useful for describing the action of general linear systems on signals of one or more spatial dimensions. Offers parallel descriptions of continuous and discrete cases. Includes many graphical and pictorial examples to illustrate the concepts. This book helps students develop an understanding of mathematical tools for describing general one- and two-dimensional linear imaging systems, and will also serve as a reference for engineers and scientists

Book Digital Filter Design and Realization

Download or read book Digital Filter Design and Realization written by Takao Hinamoto and published by River Publishers. This book was released on 2017-05-08 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis, design, and realization of digital filters have experienced major developments since the 1970s, and have now become an integral part of the theory and practice in the field of contemporary digital signal processing. Digital Filter Design and Realization is written to present an up-to-date and comprehensive account of the analysis, design, and realization of digital filters. It is intended to be used as a text for graduate students as well as a reference book for practitioners in the field. Prerequisites for this book include basic knowledge of calculus, linear algebra, signal analysis, and linear system theory. Technical topics discussed in the book include: Discrete-Time Systems and z-TransformationStability and Coefficient SensitivityState-Space ModelsFIR Digital Filter DesignFrequency-Domain Digital Filter DesignTime-Domain Digital Filter DesignInterpolated and Frequency-Response-Masking FIR Digital Filter DesignComposite Digital Filter DesignFinite Word Length EffectsCoefficient Sensitivity Analysis and MinimizationError Spectrum ShapingRoundoff Noise Analysis and MinimizationGeneralized Transposed Direct-Form IIBlock-State Realization

Book Parametric Time Frequency Domain Spatial Audio

Download or read book Parametric Time Frequency Domain Spatial Audio written by Ville Pulkki and published by John Wiley & Sons. This book was released on 2017-12-26 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide that addresses the theory and practice of spatial audio This book provides readers with the principles and best practices in spatial audio signal processing. It describes how sound fields and their perceptual attributes are captured and analyzed within the time-frequency domain, how essential representation parameters are coded, and how such signals are efficiently reproduced for practical applications. The book is split into four parts starting with an overview of the fundamentals. It then goes on to explain the reproduction of spatial sound before offering an examination of signal-dependent spatial filtering. The book finishes with coverage of both current and future applications and the direction that spatial audio research is heading in. Parametric Time-frequency Domain Spatial Audio focuses on applications in entertainment audio, including music, home cinema, and gaming—covering the capturing and reproduction of spatial sound as well as its generation, transduction, representation, transmission, and perception. This book will teach readers the tools needed for such processing, and provides an overview to existing research. It also shows recent up-to-date projects and commercial applications built on top of the systems. Provides an in-depth presentation of the principles, past developments, state-of-the-art methods, and future research directions of spatial audio technologies Includes contributions from leading researchers in the field Offers MATLAB codes with selected chapters An advanced book aimed at readers who are capable of digesting mathematical expressions about digital signal processing and sound field analysis, Parametric Time-frequency Domain Spatial Audio is best suited for researchers in academia and in the audio industry.

Book Ocean Waves and Oscillating Systems

Download or read book Ocean Waves and Oscillating Systems written by Johannes Falnes and published by Cambridge University Press. This book was released on 2020-05-28 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand the absorption of energy from ocean waves by means of oscillating systems with this useful new edition. Essential for engineers, researchers, and graduate students, and an indispensable tool for those who work in this field.

Book Elements of Nonlinear Time Series Analysis and Forecasting

Download or read book Elements of Nonlinear Time Series Analysis and Forecasting written by Jan G. De Gooijer and published by Springer. This book was released on 2017-03-30 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.

Book Time Series Analysis in Climatology and Related Sciences

Download or read book Time Series Analysis in Climatology and Related Sciences written by Victor Privalsky and published by Springer Nature. This book was released on 2020-11-22 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives the reader the basic knowledge of the theory of random processes necessary for applying to study climatic time series. It contains many examples in different areas of time series analysis such as autoregressive modelling and spectral analysis, linear extrapolation, simulation, causality, relations between scalar components of multivariate time series, and reconstructions of climate data. As an important feature, the book contains many practical examples and recommendations about how to deal and how not to deal with applied problems of time series analysis in climatology or any other science where the time series are short.

Book Voltage Sourced Converters in Power Systems

Download or read book Voltage Sourced Converters in Power Systems written by Amirnaser Yazdani and published by John Wiley & Sons. This book was released on 2010-03-25 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents Fundamentals of Modeling, Analysis, and Control of Electric Power Converters for Power System Applications Electronic (static) power conversion has gained widespread acceptance in power systems applications; electronic power converters are increasingly employed for power conversion and conditioning, compensation, and active filtering. This book presents the fundamentals for analysis and control of a specific class of high-power electronic converters—the three-phase voltage-sourced converter (VSC). Voltage-Sourced Converters in Power Systems provides a necessary and unprecedented link between the principles of operation and the applications of voltage-sourced converters. The book: Describes various functions that the VSC can perform in electric power systems Covers a wide range of applications of the VSC in electric power systems—including wind power conversion systems Adopts a systematic approach to the modeling and control design problems Illustrates the control design procedures and expected performance based on a comprehensive set of examples and digital computer time-domain simulation studies This comprehensive text presents effective techniques for mathematical modeling and control design, and helps readers understand the procedures and analysis steps. Detailed simulation case studies are included to highlight the salient points and verify the designs. Voltage-Sourced Converters in Power Systems is an ideal reference for senior undergraduate and graduate students in power engineering programs, practicing engineers who deal with grid integration and operation of distributed energy resource units, design engineers, and researchers in the area of electric power generation, transmission, distribution, and utilization.