Download or read book Fredholm and Local Spectral Theory with Applications to Multipliers written by Pietro Aiena and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: A signi?cant sector of the development of spectral theory outside the classical area of Hilbert space may be found amongst at multipliers de?ned on a complex commutative Banach algebra A. Although the general theory of multipliers for abstract Banach algebras has been widely investigated by several authors, it is surprising how rarely various aspects of the spectral theory, for instance Fredholm theory and Riesz theory, of these important classes of operators have been studied. This scarce consideration is even more surprising when one observes that the various aspects of spectral t- ory mentioned above are quite similar to those of a normal operator de?ned on a complex Hilbert space. In the last ten years the knowledge of the spectral properties of multip- ers of Banach algebras has increased considerably, thanks to the researches undertaken by many people working in local spectral theory and Fredholm theory. This research activity recently culminated with the publication of the book of Laursen and Neumann [214], which collects almost every thing that is known about the spectral theory of multipliers.
Download or read book Fredholm and Local Spectral Theory II written by Pietro Aiena and published by Springer. This book was released on 2018-11-24 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph concerns the relationship between the local spectral theory and Fredholm theory of bounded linear operators acting on Banach spaces. The purpose of this book is to provide a first general treatment of the theory of operators for which Weyl-type or Browder-type theorems hold. The product of intensive research carried out over the last ten years, this book explores for the first time in a monograph form, results that were only previously available in journal papers. Written in a simple style, with sections and chapters following an easy, natural flow, it will be an invaluable resource for researchers in Operator Theory and Functional Analysis. The reader is assumed to be familiar with the basic notions of linear algebra, functional analysis and complex analysis.
Download or read book An Introduction to Local Spectral Theory written by K. B. Laursen and published by Oxford University Press. This book was released on 2000 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern local spectral theory is built on the classical spectral theorem, a fundamental result in single-operator theory and Hilbert spaces. This book provides an in-depth introduction to the natural expansion of this fascinating topic of Banach space operator theory. It gives complete coverage of the field, including the fundamental recent work by Albrecht and Eschmeier which provides the full duality theory for Banach space operators. One of its highlights are the many characterizations of decomposable operators, and of other related, important classes of operators, including identifications of distinguished parts, and results on permanence properties of spectra with respect to several types of similarity. Written in a careful and detailed style, it contains numerous examples, many simplified proofs of classical results, extensive references, and open problems, suitable for continued research.
Download or read book Spectral Theory and Applications of Linear Operators and Block Operator Matrices written by Aref Jeribi and published by Springer. This book was released on 2015-07-04 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examining recent mathematical developments in the study of Fredholm operators, spectral theory and block operator matrices, with a rigorous treatment of classical Riesz theory of polynomially-compact operators, this volume covers both abstract and applied developments in the study of spectral theory. These topics are intimately related to the stability of underlying physical systems and play a crucial role in many branches of mathematics as well as numerous interdisciplinary applications. By studying classical Riesz theory of polynomially compact operators in order to establish the existence results of the second kind operator equations, this volume will assist the reader working to describe the spectrum, multiplicities and localization of the eigenvalues of polynomially-compact operators.
Download or read book Spectral Theory of Bounded Linear Operators written by Carlos S. Kubrusly and published by Springer Nature. This book was released on 2020-01-30 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces spectral theory for bounded linear operators by focusing on (i) the spectral theory and functional calculus for normal operators acting on Hilbert spaces; (ii) the Riesz-Dunford functional calculus for Banach-space operators; and (iii) the Fredholm theory in both Banach and Hilbert spaces. Detailed proofs of all theorems are included and presented with precision and clarity, especially for the spectral theorems, allowing students to thoroughly familiarize themselves with all the important concepts. Covering both basic and more advanced material, the five chapters and two appendices of this volume provide a modern treatment on spectral theory. Topics range from spectral results on the Banach algebra of bounded linear operators acting on Banach spaces to functional calculus for Hilbert and Banach-space operators, including Fredholm and multiplicity theories. Supplementary propositions and further notes are included as well, ensuring a wide range of topics in spectral theory are covered. Spectral Theory of Bounded Linear Operators is ideal for graduate students in mathematics, and will also appeal to a wider audience of statisticians, engineers, and physicists. Though it is mostly self-contained, a familiarity with functional analysis, especially operator theory, will be helpful.
Download or read book A Guide to Spectral Theory written by Christophe Cheverry and published by Springer Nature. This book was released on 2021-05-06 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a graduate-level introduction to the spectral theory of linear operators on Banach and Hilbert spaces, guiding readers through key components of spectral theory and its applications in quantum physics. Based on their extensive teaching experience, the authors present topics in a progressive manner so that each chapter builds on the ones preceding. Researchers and students alike will also appreciate the exploration of more advanced applications and research perspectives presented near the end of the book. Beginning with a brief introduction to the relationship between spectral theory and quantum physics, the authors go on to explore unbounded operators, analyzing closed, adjoint, and self-adjoint operators. Next, the spectrum of a closed operator is defined and the fundamental properties of Fredholm operators are introduced. The authors then develop the Grushin method to execute the spectral analysis of compact operators. The chapters that follow are devoted to examining Hille-Yoshida and Stone theorems, the spectral analysis of self-adjoint operators, and trace-class and Hilbert-Schmidt operators. The final chapter opens the discussion to several selected applications. Throughout this textbook, detailed proofs are given, and the statements are illustrated by a number of well-chosen examples. At the end, an appendix about foundational functional analysis theorems is provided to help the uninitiated reader. A Guide to Spectral Theory: Applications and Exercises is intended for graduate students taking an introductory course in spectral theory or operator theory. A background in linear functional analysis and partial differential equations is assumed; basic knowledge of bounded linear operators is useful but not required. PhD students and researchers will also find this volume to be of interest, particularly the research directions provided in later chapters.
Download or read book Concrete Operators Spectral Theory Operators in Harmonic Analysis and Approximation written by Manuel Cepedello Boiso and published by Springer Science & Business Media. This book was released on 2013-11-04 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a collection of research articles and surveys on recent developments on operator theory as well as its applications covered in the IWOTA 2011 conference held at Sevilla University in the summer of 2011. The topics include spectral theory, differential operators, integral operators, composition operators, Toeplitz operators, and more. The book also presents a large number of techniques in operator theory.
Download or read book Complex Analysis and Spectral Theory written by H. Garth Dales and published by American Mathematical Soc.. This book was released on 2020-02-07 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Conference on Complex Analysis and Spectral Theory, in celebration of Thomas Ransford's 60th birthday, held from May 21–25, 2018, at Laval University, Québec, Canada. Spectral theory is the branch of mathematics devoted to the study of matrices and their eigenvalues, as well as their infinite-dimensional counterparts, linear operators and their spectra. Spectral theory is ubiquitous in science and engineering because so many physical phenomena, being essentially linear in nature, can be modelled using linear operators. On the other hand, complex analysis is the calculus of functions of a complex variable. They are widely used in mathematics, physics, and in engineering. Both topics are related to numerous other domains in mathematics as well as other branches of science and engineering. The list includes, but is not restricted to, analytical mechanics, physics, astronomy (celestial mechanics), geology (weather modeling), chemistry (reaction rates), biology, population modeling, economics (stock trends, interest rates and the market equilibrium price changes). There are many other connections, and in recent years there has been a tremendous amount of work on reproducing kernel Hilbert spaces of analytic functions, on the operators acting on them, as well as on applications in physics and engineering, which arise from pure topics like interpolation and sampling. Many of these connections are discussed in articles included in this book.
Download or read book Spectral Theory of Multivalued Linear Operators written by Aymen Ammar and published by CRC Press. This book was released on 2021-09-15 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of multivalued linear operators—or linear relations—is the one of the most exciting and influential fields of research in modern mathematics. Applications of this theory can be found in economic theory, noncooperative games, artificial intelligence, medicine, and more. This new book focuses on the theory of linear relations, responding to the lack of resources exclusively dealing with the spectral theory of multivalued linear operators. The subject of this book is the study of linear relations over real or complex Banach spaces. The main purposes are the definitions and characterization of different kinds of spectra and extending the notions of spectra that are considered for the usual one single-valued operator bounded or not bounded. The volume introduces the theory of pseudospectra of multivalued linear operators. The main topics include demicompact linear relations, essential spectra of linear relation, pseudospectra, and essential pseudospectra of linear relations. The volume will be very useful for researchers since it represents not only a collection of a previously heterogeneous material but is also an innovation through several extensions. Beginning graduate students who wish to enter the field of spectral theory of multivalued linear operators will benefit from the material covered, and expert readers will also find sources of inspiration.
Download or read book Applied and Computational Matrix Analysis written by Natália Bebiano and published by Springer. This book was released on 2017-03-01 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents recent advances in the field of matrix analysis based on contributions at the MAT-TRIAD 2015 conference. Topics covered include interval linear algebra and computational complexity, Birkhoff polynomial basis, tensors, graphs, linear pencils, K-theory and statistic inference, showing the ubiquity of matrices in different mathematical areas. With a particular focus on matrix and operator theory, statistical models and computation, the International Conference on Matrix Analysis and its Applications 2015, held in Coimbra, Portugal, was the sixth in a series of conferences. Applied and Computational Matrix Analysis will appeal to graduate students and researchers in theoretical and applied mathematics, physics and engineering who are seeking an overview of recent problems and methods in matrix analysis.
Download or read book Functional Analysis written by V.S. Sunder and published by Springer Science & Business Media. This book was released on 1997 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an elegant and concise fashion, this book presents the concepts of functional analysis required by students of mathematics and physics. It begins with the basics of normed linear spaces and quickly proceeds to concentrate on Hilbert spaces, specifically the spectral theorem for bounded as well as unbounded operators in separable Hilbert spaces. While the first two chapters are devoted to basic propositions concerning normed vector spaces and Hilbert spaces, the third chapter treats advanced topics which are perhaps not standard in a first course on functional analysis. It begins with the Gelfand theory of commutative Banach algebras, and proceeds to the Gelfand-Naimark theorem on commutative C*-algebras. A discussion of representations of C*-algebras follows, and the final section of this chapter is devoted to the Hahn-Hellinger classification of separable representations of commutative C*-algebras. After this detour into operator algebras, the fourth chapter reverts to more standard operator theory in Hilbert space, dwelling on topics such as the spectral theorem for normal operators, the polar decomposition theorem, and the Fredholm theory for compact operators. A brief introduction to the theory of unbounded operators on Hilbert space is given in the fifth and final chapter. There is a voluminous appendix whose purpose is to fill in possible gaps in the reader's background in various areas such as linear algebra, topology, set theory and measure theory. The book is interspersed with many exercises, and hints are provided for the solutions to the more challenging of these.
Download or read book Topological Algebras and their Applications written by Alexander Katz and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-05-07 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 8th International Conference of Topological Algebras and Their Applications (ICTAA-2014), held on May 26-30, 2014 in Playa de Villas de Mar Beach, dedicated to the memory of Anastasios Mallios (Athens, Greece). This series of conferences started in 1999 in Tartu, Estonia and were subsequently held in Rabat, Moroco (2000), Oulu, Finland (2001), Oaxaca, Mexico (2002), Bedlewo, Poland (2003), Athens, Greece (2005) and Tartu, Estonia (2008 and 2013). The topics of the conference include all areas of mathematics, connected with (preferably general) topological algebras and their applications, including all kinds of topological-algebraic structures as topological linear spaces, topological rings, topological modules, topological groups and semigroups; bornological-algebraic structures such as bornological linear spaces, bornological algebras, bornological groups, bornological rings and modules; algebraic and topological K-theory; topological module bundles, sheaves and others. Contents Some results on spectral properties of unital algebras and on the algebra of linear operators on a unital algebra Descriptions of all closed maximal one-sided ideals in topological algebras On non self-adjoint operators defined by Riesz bases in Hilbert and rigged Hilbert spaces Functional calculus on algebras of operators generated by a self-adjoint operator in Pontryagin space Π1 On Gelfand-Naimark type Theorems for unital abelian complex and real locally C*-, and locally JB-algebras Multipliers and strictly real topological algebras Multipliers in some perfect locally m-pseudo-convex algebras Wedderburn structure theorems for two-sided locally m-convex H*-algebras Homologically best modules in classical and quantized functional analysis Operator Grüss inequality Main embedding theorems for symmetric spaces of measurable functions Mapping class groups are linear Subnormable A-convex algebras Commutative BP*-algebras and Gelfand-Naimark’s theorem Discrete nonclosed subsets in maximally nondiscrete topological groups Faithfully representable topological *-algebras: some spectral properties On continuity of complementors in topological algebras Dominated ergodic theorem for isometries of non-commutative Lp-spaces, 1 p p ≠ 2 Ranks and the approximate n-th root property of C*-algebras Dense ideals in topological algebras: some results and open problems
Download or read book Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras written by Vladimir Müller and published by Birkhäuser. This book was released on 2013-11-11 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. Many results appear here for the first time in a monograph.
Download or read book Recent Advances in Mathematical Analysis written by Anna Maria Candela and published by Springer Nature. This book was released on 2023-06-21 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects selected peer reviewed papers on the topics of Nonlinear Analysis, Functional Analysis, (Korovkin-Type) Approximation Theory, and Partial Differential Equations. The aim of the volume is, in fact, to promote the connection among those different fields in Mathematical Analysis. The book celebrates Francesco Altomare, on the occasion of his 70th anniversary.
Download or read book Pseudodifferential Operators and Spectral Theory written by M.A. Shubin and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: I had mixed feelings when I thought how I should prepare the book for the second edition. It was clear to me that I had to correct all mistakes and misprints that were found in the book during the life of the first edition. This was easy to do because the mistakes were mostly minor and easy to correct, and the misprints were not many. It was more difficult to decide whether I should update the book (or at least its bibliography) somehow. I decided that it did not need much of an updating. The main value of any good mathematical book is that it teaches its reader some language and some skills. It can not exhaust any substantial topic no matter how hard the author tried. Pseudodifferential operators became a language and a tool of analysis of partial differential equations long ago. Therefore it is meaningless to try to exhaust this topic. Here is an easy proof. As of July 3, 2000, MathSciNet (the database of the American Mathematical Society) in a few seconds found 3695 sources, among them 363 books, during its search for "pseudodifferential operator". (The search also led to finding 963 sources for "pseudo-differential operator" but I was unable to check how much the results ofthese two searches intersected). This means that the corresponding words appear either in the title or in the review published in Mathematical Reviews.
Download or read book Spectral Mapping Theorems written by Robin Harte and published by Springer Nature. This book was released on 2023-04-03 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by an author who was at the forefront of developments in multivariable spectral theory during the seventies and the eighties, this book describes the spectral mapping theorem in various settings. In this second edition, the Bluffer's Guide has been revised and expanded, whilst preserving the engaging style of the first. Starting with a summary of the basic algebraic systems – semigroups, rings and linear algebras – the book quickly turns to topological-algebraic systems, including Banach algebras, to set up the basic language of algebra and analysis. Key aspects of spectral theory are covered, in one and several variables. Finally the case of an arbitrary set of variables is discussed. Spectral Mapping Theorems is an accessible and easy-to-read guide, providing a convenient overview of the topic to both students and researchers. From the reviews of the first edition "I certainly plan to add it to my own mathematical library" — Anthony Wickstead in the Irish Mathematical Society Bulletin "An excellent read" — Milena Stanislavova in the Mathematical Reviews "[Offers] a fresh perspective even for experts [...] Recommended" — David Feldman in Choice
Download or read book Spectral Theory And Nonlinear Analysis With Applications To Spatial Ecology written by Santiago Cano-casanova and published by World Scientific. This book was released on 2005-09-29 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology.The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis — from the most abstract developments up to the most concrete applications to population dynamics and socio-biology — in an effort to fill the existing gaps between these fields.