EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fracture Behavior of Biological Materials and Interfaces

Download or read book Fracture Behavior of Biological Materials and Interfaces written by Dhaneshwar Mishra and published by Book Rivers. This book was released on 2021-03-12 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fracture Behavior of Inhomogeneous Biological Materials and Interfaces Biological materials like bone, nacre, human tooth layers are inhomogeneous materials made up of soft collagen, and hard, hydroxyapatite (HAP) mineral arranged in such a fashion so that these materials have higher strength and toughness, the measure of crack resisting behavior in materials, at the same time, which is exclusive in nature for different class of materials available for different application areas. The interfaces in these biological materials are designed in such a fashion so that the load transfer between the constituents takes place so smoothly, therefore, become a region of strength, not susceptible to failure like in other man-made materials and composites. It is important to understand these aspects of biological materials so that they can be mimicked to the novel materials to satisfy the growing need of different industries

Book Mechanical Behavior of Biomaterials

Download or read book Mechanical Behavior of Biomaterials written by Paulo Davim and published by Woodhead Publishing. This book was released on 2019-06-15 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanical Behaviour of Biomaterials focuses on the interface between engineering and medicine, where new insights into engineering aspects will prove to be extremely useful in their relation to the biomedical sciences and their applications. The book's main objective focuses on the mechanical behavior of biomaterials, covering key aspects, such as mechanical properties, characterization and performance. Particular emphasis is given to fatigue, creep and wear, fracture, and stress and strain relationships in biomaterials. Chapters look at both experimental and theoretical results. Readers will find this to be an essential reference for academics, biomechanical researchers, medical doctors, biologists, chemists, physicists, mechanical, biomedical and materials engineers and industrial professionals. Presents contributions from international experts Provides insights at the interface of disciplines, such as engineering and the medical and dental sciences Presents a comprehensive understanding on the mechanical properties of biomaterials Covers surface and bulk properties

Book Mechanics of Biological Systems and Materials  Volume 5

Download or read book Mechanics of Biological Systems and Materials Volume 5 written by Barton C. Prorok and published by Springer Science & Business Media. This book was released on 2012-09-26 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Biological Systems and Materials, Volume 5: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics represents one of seven volumes of technical papers presented at the Society for Experimental Mechanics SEM 12th International Congress & Exposition on Experimental and Applied Mechanics, held at Costa Mesa, California, June 11-14, 2012. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Imaging Methods for Novel Materials and Challenging Applications, Experimental and Applied Mechanics, MEMS and Nanotechnology and, Composite Materials and Joining Technologies for Composites.

Book Mechanics of Biological Systems and Materials  Volume 2

Download or read book Mechanics of Biological Systems and Materials Volume 2 written by Tom Proulx and published by Springer Science & Business Media. This book was released on 2011-05-20 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Biological Systems and Materials represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference & Exposition on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, MEMS and Nanotechnology; Optical Measurements, Modeling and, Metrology; Experimental and Applied Mechanics, Thermomechanics and Infra-Red Imaging, and Engineering Applications of Residual Stress.

Book Mechanics of Interfaces Within Biological and Biomimetic Materials

Download or read book Mechanics of Interfaces Within Biological and Biomimetic Materials written by Ahmad Khayer Dastjerdi Toroghi and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Nature, through millions of years, has evolved mechanically superior materials which have recently become a rich source of inspiration. Virtually all hard biological materials are composites where stiff, elongated inclusions are bound together through a soft polymeric "glue". In some of these composites such as nacre and bone, the stiff component is a hard and stiff minerals (aragonite in nacre and hydroxyapatite in bone) forming mineral-polymer composite while for others, such as tendon and plant cell wall, a stiff and strong polymer (collagen in tendon and cellulose in plant cell wall) constitutes the inclusion part of the polymer-polymer composite. These building blocks are bonded by softer organic materials, and the overall properties of these natural materials are highly dependent on the properties of these "weaker" interfaces. While the mechanical properties and the role of inclusions are well studied and understood, there is far less work reported in literature on the mechanics and properties of weak biological interfaces, and their composition, structure and mechanics are poorly understood. In this study the mechanical properties of weak biological interfaces in mollusk nacre are measured and their mechanics of deformation and fracture is characterized. To this end, first, the fracture toughness of interfaces within three different types of nacre (namely top shell, pearl oyster, and red abalone) is, for the first time, determined through combing the result of chevron notch fracture test, micrographs obtained from scanning electron microscope, and linear elastic fracture mechanics concept. The results revealed that fracture toughness of polymeric interfaces within nacre is indeed extremely low, in the order of the toughness of the mineral inclusions. A novel experimental method called Rigid Double Cantilever Beam (RDCB) is developed to measure the fracture toughness of very soft polymeric and biological interfaces. The method not only determines the fracture toughness of interfaces but also yields their cohesive strength, extensibility and stiffness. The method is successfully implemented on three engineering adhesives, and their fracture toughness and cohesive law are reported. The RDCB test is also used to study the effect of substrate, and chemical treatment on the interfacial fracture toughness and cohesive properties of a biological adhesive fibrin network. An eight-chain based model is then proposed to elucidate the bell-shaped cohesive law of fibrin interfaces. The new method can be used to characterize the cohesive behavior of other important proteins such as bone osteopontin. Finally, an improved fracture mechanics based criterion is developed to predict the failure of biological and engineered staggered composites. The model captures the nonuniform distribution of shear stresses along the interfaces, and the resulting stress fields within the inclusions. The criterion can be applied for a wide array of material behavior at the interface and will lead to optimal designs for the interfaces, in order to harness the full potential of bio-inspired composites. " --

Book Structural Interfaces and Attachments in Biology

Download or read book Structural Interfaces and Attachments in Biology written by Stavros Thomopoulos and published by Springer Science & Business Media. This book was released on 2012-10-05 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Attachment of dissimilar materials in engineering and surgical practice is a perennial challenge. Bimaterial attachment sites are common locations for injury, repeated injury, and mechanical failure. Nature presents several highly effective solutions to the challenge of bimaterial attachment that differ from those found in engineering practice. Structural Interfaces and Attachments in Biology describes the attachment of dissimilar materials from multiple perspectives. The text will simultaneously elucidate natural bimaterial attachments and outline engineering principles underlying successful attachments to the communities of tissue engineers and surgeons. Included an in-depth analysis of the biology of attachments in the body and mechanisms by which robust attachments are formed, a review of current concepts of attaching dissimilar materials in surgical practice and a discussion of bioengineering approaches that are currently being developed.

Book Fracture Mechanics

Download or read book Fracture Mechanics written by Lucas Alves and published by BoD – Books on Demand. This book was released on 2016-10-19 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of 13 chapters divided into seven sections: Section I: "General Foundations of the Stress Field and Toughness" with one chapter, Section II: "Fractography and Impact Analysis" with two chapters, Section III: "Toughness Fracture" with three chapters, Section IV: "Fracture Behavior" with two chapters, Section V: "Natural and Hydraulic Fractures" with two chapters, section VI: "Fatigue" with one chapter and Section VII: "Fracture Biomaterials and compatible" with two chapters. This book covers a wide range of application of fracture mechanics in materials science, engineering, rock prospecting, dentistry and medicine. The book is aimed towards materials scientists, metallurgists, mechanical and civil engineers, doctors and dentists and can also be well used in education, research and industry.

Book Mechanics and Physics of Fracture

Download or read book Mechanics and Physics of Fracture written by Laurent Ponson and published by Springer Nature. This book was released on 2023-03-31 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume provides a comprehensive understanding of the macroscopic failure behavior of solids from the description of the microscopic failure processes and their coupling with the microstructure. Several fundamental questions were addressed: the relation between the microstructural features of materials and their fracture properties and crack trajectories; the role of damage mechanisms and non-linear deformations near the crack tip on the failure behavior of solids; and finally the role of dynamic inertial effects during fast fracture was more briefly evoked. The chapters provide a pedagogical overview of recently developed concepts and tools, that permit to perform the transition from small scales to large ones in fracture problems, thus introducing basic rules for the rational design of tough solids.

Book The Fracture of Brittle Materials

Download or read book The Fracture of Brittle Materials written by Stephen W. Freiman and published by John Wiley & Sons. This book was released on 2019-01-07 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a modern, practical approach to the understanding and measurement procedures relevant to the fracture of brittle materials This book examines the testing and analysis of the fracture of brittle materials. Expanding on the measurement and analysis methodology contained in the first edition, it covers the relevant measurements (toughness and strength), material types, fracture mechanics, measurement techniques, reliability and lifetime predictions, microstructural considerations, and material/test selection processes appropriate for the analysis of the fracture behavior of brittle materials. The Fracture of Brittle Materials: Testing and Analysis, Second Edition summarizes the concepts behind the selection of a test procedure for fracture toughness and strength, and goes into detail on how the statistics of fracture can be used to assure reliability. It explains the importance of the role of microstructure in these determinations and emphasizes the use of fractographic analysis as an important tool in understanding why a part failed. The new edition includes a significant quantity of material related to the fracture of biomaterials, and features two new chapters—one on thermal shock, the other on the modeling of the fracture process. It also expands on a discussion of how to treat the statistics of fracture strength data to ensure reliability. Provides practical analysis of fracture toughness and strength Introduces the engineering and materials student to the basic concepts necessary for analyzing brittle fracture Contains new statistical analysis procedures to allow for the prediction of the safe design of brittle components Contains real-world examples to assist the reader in applying the concepts to their own research, material development, and quality-control needs The Fracture of Brittle Materials: Testing and Analysis, Second Edition is an important resource for all students, technicians, engineers, scientists, and researchers involved in the study, analysis, creation, or testing of ceramics.

Book Time Dependent Constitutive Behavior and Fracture Failure Processes  Volume 3

Download or read book Time Dependent Constitutive Behavior and Fracture Failure Processes Volume 3 written by Tom Proulx and published by Springer Science & Business Media. This book was released on 2011-05-10 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This the third volume of six from the Annual Conference of the Society for Experimental Mechanics, 2010, brings together 56 chapters on Time-Dependent Constitutive Fracture and Failure. It presents early findings from experimental and computational investigations on Time Dependent Materials including contributions on Thermal and Mechanical Characterization, Coupled Experimental and Computational Analysis of Fracture Path Selection, Procedures for Mixed Mode Fracture Testing of Bonded Beams, and Experimental Study of Voids in High Strength Aluminum Alloys.

Book Elastic and Plastic Fracture

Download or read book Elastic and Plastic Fracture written by Anthony G. Atkins and published by . This book was released on 1985 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Biomaterial Mechanics

    Book Details:
  • Author : Heather N. Hayenga
  • Publisher : CRC Press
  • Release : 2017-05-23
  • ISBN : 1498752691
  • Pages : 218 pages

Download or read book Biomaterial Mechanics written by Heather N. Hayenga and published by CRC Press. This book was released on 2017-05-23 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the fundamental knowledge of mechanics and its application to biomaterials. An overivew of computer modeling in biomaterials is offered and multiple fields where biomaterials are used are reviewed with particular emphasis to the importance of the mechanical properties of biomaterials. The reader will obtain a better understanding of the current techniqus to synthesize, characterize and integrate biomaterials into the human body.

Book Fracture Behavior of W Based Materials

Download or read book Fracture Behavior of W Based Materials written by and published by . This book was released on 1991 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bioinspired Structures and Design

Download or read book Bioinspired Structures and Design written by Wole Soboyejo and published by Cambridge University Press. This book was released on 2020-09-17 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.

Book Mechanical Behavior of Biological and Biomimetic Materials

Download or read book Mechanical Behavior of Biological and Biomimetic Materials written by and published by . This book was released on 2005 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterization of Biomaterials

Download or read book Characterization of Biomaterials written by Ryan K. Roeder and published by Elsevier Inc. Chapters. This book was released on 2013-03-12 with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design of biomedical devices almost always involves some form of mechanical characterization of biomaterials. This chapter provides a broad overview of experimental methods and important considerations for mechanical characterization of biomaterials, with special attention to the practical needs of engineers and scientists who encounter a need to characterize the mechanical properties of a biomaterial but may not know where to begin or what the key considerations should be. Many details are necessarily omitted from this broad overview, but numerous references are provided for greater technical depth on a particular topic, standardized methodologies, and exemplary studies. Fundamental concepts are introduced, beginning with stress and strain versus force and displacement. The mechanical properties measured from a stress–strain curve, different types of stress–strain curves, and corresponding constitutive models are reviewed, including differences in material classes and anisotropy. Three primary methods of analysis for fracture mechanics are introduced, including stress concentrations, energy criteria for crack initiation and propagation (fracture toughness), and statistical methods for the probability of fracture. The mechanical characterization of biomaterials begins with selection and preparation of standardized test specimens, which are critical to obtaining accurate and reproducible measurements of material properties. Practical considerations are outlined for selection and preparation of the specimen size, geometry, surface finish, and precracking. The mechanical characterization of biomaterial test specimens always involves the application and measurement of load and deformation. Practical considerations are outlined for the selection and use of load frames, load cells, load fixtures, extensometers, and strain gauges. A number of common loading modes are introduced and compared: uniaxial tension, uniaxial compression, biaxial tension, torsion, diametral compression, three-point bending, four-point bending, and in-plane shear (including biomaterial-tissue interfacial shear strength). Strain-rate sensitivity or time-dependent behavior can profoundly influence stress–strain behavior and thus measured mechanical properties. The effects of high strain rates may be characterized by impact testing using a pendulum, drop tower, or split Hopkinson pressure bar. The effects of low strain rates may be characterized by creep deformation or creep rupture tests. The time-dependent behavior of viscoelastic materials is introduced, including creep, stress relaxation, common constitutive models, and practical considerations for testing. The frequency of loading, or cyclic loading, is another aspect of time-dependent behavior, which is critical for mechanical characterization of biomaterials, leading to fatigue deformation and failure or viscoelastic creep and stress relaxation. Practical considerations are described for selecting the waveform, frequency, cyclic stress/strain levels, loading mode, and test duration. Common methods are introduced for fatigue lifetime testing (including S-N curves, notch factors, and fatigue damage), fatigue crack propagation, and dynamic mechanical analysis (DMA). Nondestructive tests are particularly useful for sampling small volumes of a biomaterial (e.g., implant retrieval or biopsy) or characterizing spatial heterogeneity in mechanical properties. Various indentation tests and indenter geometries are introduced and compared, including classic hardness (Brinell and Rockwell), microhardness (Knoop and Vickers), and instrumented nanoindentation (Berkovich, cube corner, etc.). Methods and limitations are described for characterizing the reduced modulus, viscoelasticity, and fracture toughness using indentation. Ultrasonic wave-propagation methods are also introduced with an emphasis on methods for characterizing anisotropic elastic constants. Biomaterials are typically subjected to various sterilization methods prior to service and an aqueous physiological environment in service. Therefore, the effects of temperature, pressure, various aqueous media (water, phosphate buffered saline (PBS), media, foetal bovine serum (FBS), lipids, etc.), and irradiation on mechanical characterization of biomaterials are considered, including the degradation of mechanical properties by various mechanisms involving water uptake, hydrolysis, and oxidation. Finally, methods and guidelines are provided for data acquisition from transducers and data analysis, including an introduction to some basic statistical methods.

Book Mechanical Behavior of Biomaterials

Download or read book Mechanical Behavior of Biomaterials written by J. Paulo Davim and published by Woodhead Publishing. This book was released on 2019-06-13 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanical Behaviour of Biomaterials focuses on the interface between engineering and medicine, where new insights into engineering aspects will prove to be extremely useful in their relation to the biomedical sciences and their applications. The book's main objective focuses on the mechanical behavior of biomaterials, covering key aspects, such as mechanical properties, characterization and performance. Particular emphasis is given to fatigue, creep and wear, fracture, and stress and strain relationships in biomaterials. Chapters look at both experimental and theoretical results. Readers will find this to be an essential reference for academics, biomechanical researchers, medical doctors, biologists, chemists, physicists, mechanical, biomedical and materials engineers and industrial professionals. Presents contributions from international experts Provides insights at the interface of disciplines, such as engineering and the medical and dental sciences Presents a comprehensive understanding on the mechanical properties of biomaterials Covers surface and bulk properties